DistilCamemBERT: a distillation of the French model CamemBERT
Abstract
A model significantly reduces the computational cost of CamemBERT while maintaining performance.
Modern Natural Language Processing (NLP) models based on Transformer structures represent the state of the art in terms of performance on very diverse tasks. However, these models are complex and represent several hundred million parameters for the smallest of them. This may hinder their adoption at the industrial level, making it difficult to scale up to a reasonable infrastructure and/or to comply with societal and environmental responsibilities. To this end, we present in this paper a model that drastically reduces the computational cost of a well-known French model (CamemBERT), while preserving good performance.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper