Social Biases in Automatic Evaluation Metrics for NLG
Abstract
Researchers identify social biases, particularly gender bias, in automatic evaluation metrics for text generation using Word Embeddings Association Test (WEAT) and Sentence Embeddings Association Test (SEAT).
Many studies have revealed that word embeddings, language models, and models for specific downstream tasks in NLP are prone to social biases, especially gender bias. Recently these techniques have been gradually applied to automatic evaluation metrics for text generation. In the paper, we propose an evaluation method based on Word Embeddings Association Test (WEAT) and Sentence Embeddings Association Test (SEAT) to quantify social biases in evaluation metrics and discover that social biases are also widely present in some model-based automatic evaluation metrics. Moreover, we construct gender-swapped meta-evaluation datasets to explore the potential impact of gender bias in image caption and text summarization tasks. Results show that given gender-neutral references in the evaluation, model-based evaluation metrics may show a preference for the male hypothesis, and the performance of them, i.e. the correlation between evaluation metrics and human judgments, usually has more significant variation after gender swapping.
Models citing this paper 7
Browse 7 models citing this paperDatasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper