V2X Cooperative Perception for Autonomous Driving: Recent Advances and Challenges
Abstract
This survey examines recent advances in V2X cooperative perception, including agent selection, data alignment, fusion methods, and potential upgrades through privacy-preserving AI and integrated sensing.
Achieving fully autonomous driving with heightened safety and efficiency depends on vehicle-to-everything (V2X) cooperative perception (CP), which allows vehicles to share perception data, thereby enhancing situational awareness and overcoming the limitations of the sensing ability of individual vehicles. V2X CP is crucial for extending perception range, improving accuracy, and strengthening the decision-making and control capabilities of autonomous vehicles in complex environments. This paper provides a comprehensive survey of recent advances in V2X CP, introducing mathematical models of CP processes across various collaboration strategies. We examine essential techniques for reliable perception sharing, including agent selection, data alignment, and fusion methods. Key issues are analyzed, such as agent and model heterogeneity, perception uncertainty, and the impact of V2X communication constraints like delays and data loss on CP effectiveness. To inspire further advancements in V2X CP, we outline promising avenues, including privacy-preserving artificial intelligence (AI), collaborative AI, and integrated sensing frameworks, as pathways to enhance CP capabilities.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper