Papers
arxiv:2402.03166

RRWNet: Recursive Refinement Network for effective retinal artery/vein segmentation and classification

Published on Feb 5, 2024
Authors:
,

Abstract

The caliber and configuration of retinal blood vessels serve as important biomarkers for various diseases and medical conditions. A thorough analysis of the retinal vasculature requires the segmentation of the blood vessels and their classification into arteries and veins, typically performed on color fundus images obtained by retinography. However, manually performing these tasks is labor-intensive and prone to human error. While several automated methods have been proposed to address this task, the current state of art faces challenges due to manifest classification errors affecting the topological consistency of segmentation maps. In this work, we introduce RRWNet, a novel end-to-end deep learning framework that addresses this limitation. The framework consists of a fully convolutional neural network that recursively refines semantic segmentation maps, correcting manifest classification errors and thus improving topological consistency. In particular, RRWNet is composed of two specialized subnetworks: a Base subnetwork that generates base segmentation maps from the input images, and a Recursive Refinement subnetwork that iteratively and recursively improves these maps. Evaluation on three different public datasets demonstrates the state-of-the-art performance of the proposed method, yielding more topologically consistent segmentation maps with fewer manifest classification errors than existing approaches. In addition, the Recursive Refinement module within RRWNet proves effective in post-processing segmentation maps from other methods, further demonstrating its potential. The model code, weights, and predictions will be publicly available at https://github.com/j-morano/rrwnet.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2402.03166 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2402.03166 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.