Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFinancial News Analytics Using Fine-Tuned Llama 2 GPT Model
The paper considers the possibility to fine-tune Llama 2 GPT large language model (LLM) for the multitask analysis of financial news. For fine-tuning, the PEFT/LoRA based approach was used. In the study, the model was fine-tuned for the following tasks: analysing a text from financial market perspectives, highlighting main points of a text, summarizing a text and extracting named entities with appropriate sentiments. The obtained results show that the fine-tuned Llama 2 model can perform a multitask financial news analysis with a specified structure of response, part of response can be a structured text and another part of data can have JSON format for further processing. Extracted sentiments for named entities can be considered as predictive features in supervised machine learning models with quantitative target variables.
Non-Intrusive Adaptation: Input-Centric Parameter-efficient Fine-Tuning for Versatile Multimodal Modeling
Large language models (LLMs) and vision language models (VLMs) demonstrate excellent performance on a wide range of tasks by scaling up parameter counts from O(10^9) to O(10^{12}) levels and further beyond. These large scales make it impossible to adapt and deploy fully specialized models given a task of interest. Parameter-efficient fine-tuning (PEFT) emerges as a promising direction to tackle the adaptation and serving challenges for such large models. We categorize PEFT techniques into two types: intrusive and non-intrusive. Intrusive PEFT techniques directly change a model's internal architecture. Though more flexible, they introduce significant complexities for training and serving. Non-intrusive PEFT techniques leave the internal architecture unchanged and only adapt model-external parameters, such as embeddings for input. In this work, we describe AdaLink as a non-intrusive PEFT technique that achieves competitive performance compared to SoTA intrusive PEFT (LoRA) and full model fine-tuning (FT) on various tasks. We evaluate using both text-only and multimodal tasks, with experiments that account for both parameter-count scaling and training regime (with and without instruction tuning).
SALT: Singular Value Adaptation with Low-Rank Transformation
The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT
MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report
In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.
CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications
The integration of Large Language Models (LLMs) into financial analysis has garnered significant attention in the NLP community. This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks: financial classification, financial text summarization, and single stock trading. We adopted Llama3-8B and Mistral-7B as base models, fine-tuning them through Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model performance, we combine datasets from task 1 and task 2 for data fusion. Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
LoRA Dropout as a Sparsity Regularizer for Overfitting Control
Parameter-efficient fine-tuning methods, represented by LoRA, play an essential role in adapting large-scale pre-trained models to downstream tasks. However, fine-tuning LoRA-series models also faces the risk of overfitting on the training dataset, and yet there's still a lack of theoretical guidance and practical mechanism to control overfitting on LoRA-based PEFT methods. In this paper, we propose a LoRA Dropout mechanism for the LoRA-based methods by introducing random noises to the learnable low-rank matrices and increasing parameter sparsity. We then demonstrate the theoretical mechanism of our LoRA Dropout mechanism from the perspective of sparsity regularization by providing a generalization error bound under this framework. Theoretical results show that appropriate sparsity would help tighten the gap between empirical and generalization risks and thereby control overfitting. Furthermore, based on the LoRA Dropout framework, we introduce a test-time ensemble strategy and provide theoretical evidence demonstrating that the ensemble method can further compress the error bound, and lead to better performance during inference time. Extensive experiments on various NLP tasks provide practical validations of the effectiveness of our LoRA Dropout framework in improving model accuracy and calibration.
BA-LoRA: Bias-Alleviating Low-Rank Adaptation to Mitigate Catastrophic Inheritance in Large Language Models
Large language models (LLMs) have demonstrated remarkable proficiency across various natural language processing (NLP) tasks. However, adapting LLMs to downstream applications requires computationally intensive and memory-demanding fine-tuning procedures. To alleviate these burdens, parameter-efficient fine-tuning (PEFT) techniques have emerged as a promising approach to tailor LLMs with minimal computational overhead. While PEFT methods offer substantial advantages, they do not fully address the pervasive issue of bias propagation from pre-training data. This work introduces Bias-Alleviating Low-Rank Adaptation (BA-LoRA), a novel PEFT method designed to counteract bias inheritance. BA-LoRA incorporates three distinct regularization terms: (1) a consistency regularizer, (2) a diversity regularizer, and (3) a singular value decomposition regularizer. These regularizers aim to enhance the models' consistency, diversity, and generalization capabilities during fine-tuning. We conduct extensive experiments on natural language understanding (NLU) and natural language generation (NLG) tasks using prominent LLMs such as LLaMA, Mistral, and Gemma. The results demonstrate that BA-LoRA outperforms LoRA and its state-of-the-art variants. Moreover, our method effectively mitigates the adverse effects of pre-training bias, leading to more reliable and robust model outputs. The code is available at https://github.com/cyp-jlu-ai/BA-LoRA.
MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
Parameter-efficient fine-tuning (PEFT) has been widely employed for domain adaptation, with LoRA being one of the most prominent methods due to its simplicity and effectiveness. However, in multi-task learning (MTL) scenarios, LoRA tends to obscure the distinction between tasks by projecting sparse high-dimensional features from different tasks into the same dense low-dimensional intrinsic space. This leads to task interference and suboptimal performance for LoRA and its variants. To tackle this challenge, we propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities. MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and effectively capture shared knowledge across various tasks within low-dimensional spaces. This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters. Comprehensive experimental results, including evaluations on public academic benchmarks for natural language understanding, commonsense reasoning, and image-text understanding, as well as real-world industrial text Ads relevance datasets, demonstrate that MTL-LoRA outperforms LoRA and its various variants with comparable or even fewer learnable parameters in multitask learning.
DLP-LoRA: Efficient Task-Specific LoRA Fusion with a Dynamic, Lightweight Plugin for Large Language Models
Recent advancements in Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a small subset of parameters. However, existing methods for fusing multiple LoRAs lack dynamic fusion based on contextual inputs and often increase inference time due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight Plugin that employs a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-p sampling strategies. This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation. Evaluations across 26 tasks-including multiple-choice questions and question answering-demonstrate that DLP-LoRA achieves an average accuracy of 92.34% on multiple-choice datasets and significant improvements in BLEU and ROUGE scores on QA datasets, outperforming different LLMs backbones under composite task settings. DLP-LoRA effectively balances performance and efficiency, making it a practical solution for dynamic multi-task adaptation in LLMs. Our code is available at https://github.com/MeCuping/DLP-LoRA.
Context-PEFT: Efficient Multi-Modal, Multi-Task Fine-Tuning
This paper introduces a novel Parameter-Efficient Fine-Tuning (PEFT) framework for multi-modal, multi-task transfer learning with pre-trained language models. PEFT techniques such as LoRA, BitFit and IA3 have demonstrated comparable performance to full fine-tuning of pre-trained models for specific downstream tasks, all while demanding significantly fewer trainable parameters and reduced GPU memory consumption. However, in the context of multi-modal fine-tuning, the need for architectural modifications or full fine-tuning often becomes apparent. To address this we propose Context-PEFT, which learns different groups of adaptor parameters based on the token's domain. This approach enables LoRA-like weight injection without requiring additional architectural changes. Our method is evaluated on the COCO captioning task, where it outperforms full fine-tuning under similar data constraints while simultaneously offering a substantially more parameter-efficient and computationally economical solution.
KD-LoRA: A Hybrid Approach to Efficient Fine-Tuning with LoRA and Knowledge Distillation
Large language models (LLMs) have demonstrated remarkable performance across various downstream tasks. However, the high computational and memory requirements of LLMs are a major bottleneck. To address this, parameter-efficient fine-tuning (PEFT) methods such as low-rank adaptation (LoRA) have been proposed to reduce computational costs while ensuring minimal loss in performance. Additionally, knowledge distillation (KD) has been a popular choice for obtaining compact student models from teacher models. In this work, we present KD-LoRA, a novel fine-tuning method that combines LoRA with KD. Our results demonstrate that KD-LoRA achieves performance comparable to full fine-tuning (FFT) and LoRA while significantly reducing resource requirements. Specifically, KD-LoRA retains 98% of LoRA's performance on the GLUE benchmark, while being 40% more compact. Additionally, KD-LoRA reduces GPU memory usage by 30% compared to LoRA, while decreasing inference time by 30% compared to both FFT and LoRA. We evaluate KD-LoRA across three encoder-only models: BERT, RoBERTa, and DeBERTaV3. Code is available at https://github.com/rambodazimi/KD-LoRA.
Sparsely Shared LoRA on Whisper for Child Speech Recognition
Whisper is a powerful automatic speech recognition (ASR) model. Nevertheless, its zero-shot performance on low-resource speech requires further improvement. Child speech, as a representative type of low-resource speech, is leveraged for adaptation. Recently, parameter-efficient fine-tuning (PEFT) in NLP was shown to be comparable and even better than full fine-tuning, while only needing to tune a small set of trainable parameters. However, current PEFT methods have not been well examined for their effectiveness on Whisper. In this paper, only parameter composition types of PEFT approaches such as LoRA and Bitfit are investigated as they do not bring extra inference costs. Different popular PEFT methods are examined. Particularly, we compare LoRA and AdaLoRA and figure out the learnable rank coefficient is a good design. Inspired by the sparse rank distribution allocated by AdaLoRA, a novel PEFT approach Sparsely Shared LoRA (S2-LoRA) is proposed. The two low-rank decomposed matrices are globally shared. Each weight matrix only has to maintain its specific rank coefficients that are constrained to be sparse. Experiments on low-resource Chinese child speech show that with much fewer trainable parameters, S2-LoRA can achieve comparable in-domain adaptation performance to AdaLoRA and exhibit better generalization ability on out-of-domain data. In addition, the rank distribution automatically learned by S2-LoRA is found to have similar patterns to AdaLoRA's allocation.
LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization
Large Language Models (LLMs) have achieved remarkable success in natural language processing, but their full fine-tuning remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), have emerged as a practical solution by approximating parameter updates with low-rank matrices. However, LoRA often exhibits a "double descent" phenomenon during fine-tuning, where model performance degrades due to overfitting and limited expressiveness caused by low-rank constraints. To address this issue, we propose LoRA-GGPO (Gradient-Guided Perturbation Optimization), a novel method that leverages gradient and weight norms to generate targeted perturbations. By optimizing the sharpness of the loss landscape, LoRA-GGPO guides the model toward flatter minima, mitigating the double descent problem and improving generalization. Extensive experiments on natural language understanding (NLU) and generation (NLG) tasks demonstrate that LoRA-GGPO outperforms LoRA and its state-of-the-art variants. Furthermore, extended experiments specifically designed to analyze the double descent phenomenon confirm that LoRA-GGPO effectively alleviates this issue, producing more robust and generalizable models. Our work provides a robust and efficient solution for fine-tuning LLMs, with broad applicability in real-world scenarios. The code is available at https://github.com/llm172/LoRA-GGPO.
LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the Server-Side LoRA Aggregation Bias, where server-side averaging of LoRA matrices diverges from the ideal global update, and the Client-Side LoRA Initialization Drift, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
S-LoRA: Serving Thousands of Concurrent LoRA Adapters
The "pretrain-then-finetune" paradigm is commonly adopted in the deployment of large language models. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging. Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific fine-tuned models and offers the potential for large-scale customized fine-tuning services.
Higher Layers Need More LoRA Experts
Parameter-efficient tuning (PEFT) techniques like low-rank adaptation (LoRA) offer training efficiency on Large Language Models, but their impact on model performance remains limited. Recent efforts integrate LoRA and Mixture-of-Experts (MoE) to improve the performance of PEFT methods. Despite promising results, research on improving the efficiency of LoRA with MoE is still in its early stages. Recent studies have shown that experts in the MoE architecture have different strengths and also exhibit some redundancy. Does this statement also apply to parameter-efficient MoE? In this paper, we introduce a novel parameter-efficient MoE method, \textbf{MoE-LoRA with Layer-wise Expert Allocation (MoLA)} for Transformer-based models, where each model layer has the flexibility to employ a varying number of LoRA experts. We investigate several architectures with varying layer-wise expert configurations. Experiments on six well-known NLP and commonsense QA benchmarks demonstrate that MoLA achieves equal or superior performance compared to all baselines. We find that allocating more LoRA experts to higher layers further enhances the effectiveness of models with a certain number of experts in total. With much fewer parameters, this allocation strategy outperforms the setting with the same number of experts in every layer. This work can be widely used as a plug-and-play parameter-efficient tuning approach for various applications. The code is available at https://github.com/GCYZSL/MoLA.
DynMoLE: Boosting Mixture of LoRA Experts Fine-Tuning with a Hybrid Routing Mechanism
Instruction-based fine-tuning of large language models (LLMs) has achieved remarkable success in various natural language processing (NLP) tasks. Parameter-efficient fine-tuning (PEFT) methods, such as Mixture of LoRA Experts (MoLE), combine the efficiency of Low-Rank Adaptation (LoRA) with the versatility of Mixture of Experts (MoE) models, demonstrating significant potential for handling multiple downstream tasks. However, the existing routing mechanisms for MoLE often involve a trade-off between computational efficiency and predictive accuracy, and they fail to fully address the diverse expert selection demands across different transformer layers. In this work, we propose DynMoLE, a hybrid routing strategy that dynamically adjusts expert selection based on the Tsallis entropy of the router's probability distribution. This approach mitigates router uncertainty, enhances stability, and promotes more equitable expert participation, leading to faster convergence and improved model performance. Additionally, we introduce an auxiliary loss based on Tsallis entropy to further guide the model toward convergence with reduced uncertainty, thereby improving training stability and performance. Our extensive experiments on commonsense reasoning benchmarks demonstrate that DynMoLE achieves substantial performance improvements, outperforming LoRA by 9.6% and surpassing the state-of-the-art MoLE method, MoLA, by 2.3%. We also conduct a comprehensive ablation study to evaluate the contributions of DynMoLE's key components.
A LoRA is Worth a Thousand Pictures
Recent advances in diffusion models and parameter-efficient fine-tuning (PEFT) have made text-to-image generation and customization widely accessible, with Low Rank Adaptation (LoRA) able to replicate an artist's style or subject using minimal data and computation. In this paper, we examine the relationship between LoRA weights and artistic styles, demonstrating that LoRA weights alone can serve as an effective descriptor of style, without the need for additional image generation or knowledge of the original training set. Our findings show that LoRA weights yield better performance in clustering of artistic styles compared to traditional pre-trained features, such as CLIP and DINO, with strong structural similarities between LoRA-based and conventional image-based embeddings observed both qualitatively and quantitatively. We identify various retrieval scenarios for the growing collection of customized models and show that our approach enables more accurate retrieval in real-world settings where knowledge of the training images is unavailable and additional generation is required. We conclude with a discussion on potential future applications, such as zero-shot LoRA fine-tuning and model attribution.
Choice of PEFT Technique in Continual Learning: Prompt Tuning is Not All You Need
Recent Continual Learning (CL) methods have combined pretrained Transformers with prompt tuning, a parameter-efficient fine-tuning (PEFT) technique. We argue that the choice of prompt tuning in prior works was an undefended and unablated decision, which has been uncritically adopted by subsequent research, but warrants further research to understand its implications. In this paper, we conduct this research and find that the choice of prompt tuning as a PEFT method hurts the overall performance of the CL system. To illustrate this, we replace prompt tuning with LoRA in two state-of-the-art continual learning methods: Learning to Prompt and S-Prompts. These variants consistently achieve higher accuracy across a wide range of domain-incremental and class-incremental benchmarks, while being competitive in inference speed. Our work highlights a crucial argument: unexamined choices can hinder progress in the field, and rigorous ablations, such as the PEFT method, are required to drive meaningful adoption of CL techniques in real-world applications.
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
Motivated by the Parameter-Efficient Fine-Tuning (PEFT) in large language models, we propose LoRAT, a method that unveils the power of large ViT model for tracking within laboratory-level resources. The essence of our work lies in adapting LoRA, a technique that fine-tunes a small subset of model parameters without adding inference latency, to the domain of visual tracking. However, unique challenges and potential domain gaps make this transfer not as easy as the first intuition. Firstly, a transformer-based tracker constructs unshared position embedding for template and search image. This poses a challenge for the transfer of LoRA, usually requiring consistency in the design when applied to the pre-trained backbone, to downstream tasks. Secondly, the inductive bias inherent in convolutional heads diminishes the effectiveness of parameter-efficient fine-tuning in tracking models. To overcome these limitations, we first decouple the position embeddings in transformer-based trackers into shared spatial ones and independent type ones. The shared embeddings, which describe the absolute coordinates of multi-resolution images (namely, the template and search images), are inherited from the pre-trained backbones. In contrast, the independent embeddings indicate the sources of each token and are learned from scratch. Furthermore, we design an anchor-free head solely based on MLP to adapt PETR, enabling better performance with less computational overhead. With our design, 1) it becomes practical to train trackers with the ViT-g backbone on GPUs with only memory of 25.8GB (batch size of 16); 2) we reduce the training time of the L-224 variant from 35.0 to 10.8 GPU hours; 3) we improve the LaSOT SUC score from 0.703 to 0.742 with the L-224 variant; 4) we fast the inference speed of the L-224 variant from 52 to 119 FPS. Code and models are available at https://github.com/LitingLin/LoRAT.
STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA
As large language models (LLMs) have become increasingly compute and memory intensive, parameter-efficient fine-tuning (PEFT) methods are now a common strategy to fine-tune LLMs. A popular PEFT method is Low-Rank Adapters (LoRA), which adds trainable low-rank "adapters" to selected layers. Each adapter consists of a low-rank matrix product, multiplicatively scaled by a rank-dependent factor. This scaling factor, which divides adapters by a factor of the rank, results in slowed learning and stunted performance for LoRA with higher-rank adapters. Consequently, the use of LoRA in practice has generally been limited to very low ranks. In this work, we study the impact of the scaling factor on the learning process and prove that LoRA adapters should be divided by a factor of the square root of the rank. Modifying LoRA with the appropriate scaling factor, which we call the rank-stabilized LoRA (rsLoRA) method, easily provides for a fine-tuning compute/performance trade-off, where larger ranks can be used to trade off increased computational resources during training for better fine-tuning performance, with no change in inference computing cost.
VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks
As the adoption of large language models increases and the need for per-user or per-task model customization grows, the parameter-efficient fine-tuning (PEFT) methods, such as low-rank adaptation (LoRA) and its variants, incur substantial storage and transmission costs. To further reduce stored parameters, we introduce a "divide-and-share" paradigm that breaks the barriers of low-rank decomposition across matrix dimensions, modules and layers by sharing parameters globally via a vector bank. As an instantiation of the paradigm to LoRA, our proposed VB-LoRA composites all the low-rank matrices of LoRA from a shared vector bank with a differentiable top-k admixture module. VB-LoRA achieves extreme parameter efficiency while maintaining comparable or better performance compared to state-of-the-art PEFT methods. Extensive experiments demonstrate the effectiveness of VB-LoRA on natural language understanding, natural language generation, and instruction tuning tasks. When fine-tuning the Llama2-13B model, VB-LoRA only uses 0.4% of LoRA's stored parameters, yet achieves superior results. Our source code is available at https://github.com/leo-yangli/VB-LoRA.
Improving LoRA in Privacy-preserving Federated Learning
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models for its good performance and computational efficiency. LoRA injects a product of two trainable rank decomposition matrices over the top of each frozen pre-trained model module. However, when applied in the setting of privacy-preserving federated learning (FL), LoRA may become unstable due to the following facts: 1) the effects of data heterogeneity and multi-step local updates are non-negligible, 2) additive noise enforced on updating gradients to guarantee differential privacy (DP) can be amplified and 3) the final performance is susceptible to hyper-parameters. A key factor leading to these phenomena is the discordance between jointly optimizing the two low-rank matrices by local clients and separately aggregating them by the central server. Thus, this paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges and further halve the communication cost of federated fine-tuning LLMs. The core idea of FFA-LoRA is to fix the randomly initialized non-zero matrices and only fine-tune the zero-initialized matrices. Compared to LoRA, FFA-LoRA is motivated by practical and theoretical benefits in privacy-preserved FL. Our experiments demonstrate that FFA-LoRA provides more consistent performance with better computational efficiency over vanilla LoRA in various FL tasks.
Block-wise LoRA: Revisiting Fine-grained LoRA for Effective Personalization and Stylization in Text-to-Image Generation
The objective of personalization and stylization in text-to-image is to instruct a pre-trained diffusion model to analyze new concepts introduced by users and incorporate them into expected styles. Recently, parameter-efficient fine-tuning (PEFT) approaches have been widely adopted to address this task and have greatly propelled the development of this field. Despite their popularity, existing efficient fine-tuning methods still struggle to achieve effective personalization and stylization in T2I generation. To address this issue, we propose block-wise Low-Rank Adaptation (LoRA) to perform fine-grained fine-tuning for different blocks of SD, which can generate images faithful to input prompts and target identity and also with desired style. Extensive experiments demonstrate the effectiveness of the proposed method.
Train More Parameters But Mind Their Placement: Insights into Language Adaptation with PEFT
Smaller LLMs still face significant challenges even in medium-resourced languages, particularly when it comes to language-specific knowledge -- a problem not easily resolved with machine-translated data. In this case study on Icelandic, we aim to enhance the generation performance of an LLM by specialising it using unstructured text corpora. A key focus is on preventing interference with the models' capabilities of handling longer context during this adaptation. Through ablation studies using various parameter-efficient fine-tuning (PEFT) methods and setups, we find that increasing the number of trainable parameters leads to better and more robust language adaptation. LoRAs placed in the feed-forward layers and bottleneck adapters show promising results with sufficient parameters, while prefix tuning and (IA)3 are not suitable. Although improvements are consistent in 0-shot summarisation, some adapted models struggle with longer context lengths, an issue that can be mitigated by adapting only the final layers.
LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report
Low Rank Adaptation (LoRA) has emerged as one of the most widely adopted methods for Parameter Efficient Fine-Tuning (PEFT) of Large Language Models (LLMs). LoRA reduces the number of trainable parameters and memory usage while achieving comparable performance to full fine-tuning. We aim to assess the viability of training and serving LLMs fine-tuned with LoRA in real-world applications. First, we measure the quality of LLMs fine-tuned with quantized low rank adapters across 10 base models and 31 tasks for a total of 310 models. We find that 4-bit LoRA fine-tuned models outperform base models by 34 points and GPT-4 by 10 points on average. Second, we investigate the most effective base models for fine-tuning and assess the correlative and predictive capacities of task complexity heuristics in forecasting the outcomes of fine-tuning. Finally, we evaluate the latency and concurrency capabilities of LoRAX, an open-source Multi-LoRA inference server that facilitates the deployment of multiple LoRA fine-tuned models on a single GPU using shared base model weights and dynamic adapter loading. LoRAX powers LoRA Land, a web application that hosts 25 LoRA fine-tuned Mistral-7B LLMs on a single NVIDIA A100 GPU with 80GB memory. LoRA Land highlights the quality and cost-effectiveness of employing multiple specialized LLMs over a single, general-purpose LLM.
$\textit{Trans-LoRA}$: towards data-free Transferable Parameter Efficient Finetuning
Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the observed task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks.
L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ
Post-training quantization (PTQ) and quantization-aware training (QAT) methods are gaining popularity in mitigating the high memory and computational costs associated with Large Language Models (LLMs). In resource-constrained scenarios, PTQ, with its reduced training overhead, is often preferred over QAT, despite the latter's potential for higher accuracy. Meanwhile, parameter-efficient fine-tuning (PEFT) methods like low-rank adaptation (LoRA) have been introduced, and recent efforts have explored quantization-aware PEFT techniques. However, these approaches may lack generality due to their reliance on the pre-quantized model's configuration. Their effectiveness may be compromised by non-linearly quantized or mixed-precision weights, and the retraining of specific quantization parameters might impede optimal performance. To address these challenges, we propose L4Q, an algorithm for parameter-efficient quantization-aware training. L4Q leverages LoRA-wise learned quantization step size for LLMs, aiming to enhance generality. The simultaneous quantization-and-fine-tuning process of L4Q is applicable to high-precision models, yielding linearly quantized weights with superior accuracy. Our experiments, conducted on the LLaMA and LLaMA2 model families using an instructional dataset, showcase L4Q's capabilities in language comprehension and few-shot in-context learning, achieving sub-4-bit precision while maintaining comparable training times to applying PEFT on a quantized model.
From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers
Pretrained Language Models (PLMs) have become the de facto starting point for fine-tuning on downstream tasks. However, as model sizes continue to increase, traditional fine-tuning of all parameters becomes challenging. To address this, parameter-efficient fine-tuning (PEFT) methods have gained popularity as a means to adapt PLMs effectively. In parallel, recent studies have revealed the presence of activation sparsity within the intermediate outputs of the multilayer perception (MLP) blocks in transformers. Low activation density enables efficient model inference on sparsity-aware hardware. Building upon this insight, in this work, we propose a novel density loss that encourages higher activation sparsity (equivalently, lower activation density) in the pre-trained models. We demonstrate the effectiveness of our approach by utilizing mainstream PEFT techniques including QLoRA, LoRA, Adapter, Prompt/Prefix Tuning to facilitate efficient model adaptation across diverse downstream tasks. Experiments show that our proposed method DEFT, Density-Efficient Fine-Tuning, can reduce the activation density consistently and up to 50.72% on RoBERTa_Large, and 53.19% (encoder density) and 90.60% (decoder density) on Flan-T5_XXL (11B) compared to PEFT using GLUE and QA (SQuAD) benchmarks respectively while maintaining competitive performance on downstream tasks. We also showcase that DEFT works complementary with quantized and pruned models
LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters
The recent trend in scaling language models has led to a growing demand for parameter-efficient tuning (PEFT) methods such as LoRA (Low-Rank Adaptation). LoRA consistently matches or surpasses the full fine-tuning baseline with fewer parameters. However, handling numerous task-specific or user-specific LoRA modules on top of a base model still presents significant storage challenges. To address this, we introduce LoRA-XS (Low-Rank Adaptation with eXtremely Small number of parameters), a novel approach leveraging Singular Value Decomposition (SVD) for parameter-efficient fine-tuning. LoRA-XS introduces a small r x r weight matrix between frozen LoRA matrices, which are constructed by SVD of the original weight matrix. Training only r x r weight matrices ensures independence from model dimensions, enabling more parameter-efficient fine-tuning, especially for larger models. LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA. Our benchmarking across various scales, including GLUE, GSM8k, and MATH benchmarks, shows that our approach outperforms LoRA and recent state-of-the-art approaches like VeRA in terms of parameter efficiency while maintaining competitive performance.
MeteoRA: Multiple-tasks Embedded LoRA for Large Language Models
The pretrain+fine-tune paradigm is foundational in deploying large language models (LLMs) across a diverse range of downstream applications. Among these, Low-Rank Adaptation (LoRA) stands out for its parameter-efficient fine-tuning (PEFT), producing numerous off-the-shelf task-specific LoRA adapters. However, this approach requires explicit task intention selection, posing challenges for automatic task sensing and switching during inference with multiple existing LoRA adapters embedded in a single LLM. In this work, we introduce MeteoRA (Multiple-Tasks embedded LoRA), a scalable multi-knowledge LoRA fusion framework designed for LLMs. MeteoRA integrates various LoRA adapters in a Mixture-of-Experts (MoE) style into the base LLM, enabling the model to automatically select the most pertinent adapter based on the task input. This advancement significantly enhances the LLM's capability to handle composite tasks that require different adapters to solve various components of the problem. Our evaluations, featuring the LlaMA2-13B and LlaMA3-8B base models equipped with off-the-shelf 28 LoRA adapters through MeteoRA, demonstrate equivalent performance with the individual adapters. Furthermore, both base models equipped with MeteoRA achieve superior performance in sequentially solving composite tasks with ten problems in only a single inference process, highlighting the ability of timely intention switching in MeteoRA embedded LLMs.
LoRA-GA: Low-Rank Adaptation with Gradient Approximation
Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs. LoRA, as one of the most popular Parameter-Efficient Fine-Tuning (PEFT) methods, offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters. Although LoRA reduces the computational and memory requirements significantly at each iteration, extensive empirical evidence indicates that it converges at a considerably slower rate compared to full fine-tuning, ultimately leading to increased overall compute and often worse test performance. In our paper, we perform an in-depth investigation of the initialization method of LoRA and show that careful initialization (without any change of the architecture and the training algorithm) can significantly enhance both efficiency and performance. In particular, we introduce a novel initialization method, LoRA-GA (Low Rank Adaptation with Gradient Approximation), which aligns the gradients of low-rank matrix product with those of full fine-tuning at the first step. Our extensive experiments demonstrate that LoRA-GA achieves a convergence rate comparable to that of full fine-tuning (hence being significantly faster than vanilla LoRA as well as various recent improvements) while simultaneously attaining comparable or even better performance. For example, on the subset of the GLUE dataset with T5-Base, LoRA-GA outperforms LoRA by 5.69% on average. On larger models such as Llama 2-7B, LoRA-GA shows performance improvements of 0.34, 11.52%, and 5.05% on MT-bench, GSM8K, and Human-eval, respectively. Additionally, we observe up to 2-4 times convergence speed improvement compared to vanilla LoRA, validating its effectiveness in accelerating convergence and enhancing model performance. Code is available at https://github.com/Outsider565/LoRA-GA.
PeriodicLoRA: Breaking the Low-Rank Bottleneck in LoRA Optimization
Supervised fine-tuning is the most common method to adapt large language models (LLMs) to downstream tasks, but full fine-tuning LLMs requires massive computational resources. Recently, parameter-efficient fine-tuning (PEFT) methods have been widely studied due to its cost-effectiveness. LoRA is one of the most widely used methods, which assumes that the optimization process is essentially low-dimensional. Although LoRA fine-tuning is effective, there is still a performance gap compared to full fine-tuning, since its weight update is limited to low-rank matrices. In order to break the low-rank bottleneck in LoRA Optimization, we propose PeriodicLoRA (PLoRA), which accumulates low-rank update matrices multiple times to achieve a higher update rank. PLoRA has multiple training stages. During each stage, we still update only the LoRA weights. However, at the end of each stage, we unload the LoRA weights into the backbone parameters and then reinitialize the LoRA states. Experimental results show that PLoRA has stronger learning ability, approximately 1.8 times that of LoRA's learning ability at most, but it does not increase memory usage. Further, we introduce a momentum-based unloading strategy for PLoRA to mitigate the training instability.
Empirical Study of PEFT techniques for Winter Wheat Segmentation
Parameter Efficient Fine Tuning (PEFT) techniques have recently experienced significant growth and have been extensively employed to adapt large vision and language models to various domains, enabling satisfactory model performance with minimal computational needs. Despite these advances, more research has yet to delve into potential PEFT applications in real-life scenarios, particularly in the critical domains of remote sensing and crop monitoring. The diversity of climates across different regions and the need for comprehensive large-scale datasets have posed significant obstacles to accurately identify crop types across varying geographic locations and changing growing seasons. This study seeks to bridge this gap by comprehensively exploring the feasibility of cross-area and cross-year out-of-distribution generalization using the State-of-the-Art (SOTA) wheat crop monitoring model. The aim of this work is to explore PEFT approaches for crop monitoring. Specifically, we focus on adapting the SOTA TSViT model to address winter wheat field segmentation, a critical task for crop monitoring and food security. This adaptation process involves integrating different PEFT techniques, including BigFit, LoRA, Adaptformer, and prompt tuning. Using PEFT techniques, we achieved notable results comparable to those achieved using full fine-tuning methods while training only a mere 0.7% parameters of the whole TSViT architecture. The in-house labeled data-set, referred to as the Beqaa-Lebanon dataset, comprises high-quality annotated polygons for wheat and non-wheat classes with a total surface of 170 kmsq, over five consecutive years. Using Sentinel-2 images, our model achieved a 84% F1-score. We intend to publicly release the Lebanese winter wheat data set, code repository, and model weights.
Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE
Recent studies have demonstrated Large Language Models (LLMs) can extend their zero-shot generalization capabilities to multimodal learning through instruction tuning. As more modalities and downstream tasks are introduced, negative conflicts and interference may have a worse impact on performance. While this phenomenon has been overlooked in previous work, we propose a novel and extensible framework, called Octavius, for comprehensive studies and experimentation on multimodal learning with Multimodal Large Language Models (MLLMs). Specifically, we combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning. To the best of our knowledge, we are one of the pioneering efforts to introduce MoE into MLLMs to address this problem. The experimental results (about 20% improvement) have shown the effectiveness and versatility of our design in various 2D and 3D downstream tasks. Code and datasets are available at https://openlamm.github.io/paper_list/Octavius.
Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning
Training LLMs presents significant memory challenges due to growing size of data, weights, and optimizer states. Techniques such as data and model parallelism, gradient checkpointing, and offloading strategies address this issue but are often infeasible due to hardware constraints. To mitigate memory usage, alternative methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approximate weights or optimizer states. PEFT methods, such as LoRA, have gained popularity for fine-tuning LLMs, though they require a full-rank warm start. In contrast, GaLore allows full-parameter learning while being more memory-efficient. This work introduces Natural GaLore, a simple drop in replacement for AdamW, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients using Woodbury's Identity. We demonstrate that incorporating second-order information speeds up optimization significantly, especially when the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and 1.1B parameter Llama models on C4 data demonstrate significantly lower perplexity over GaLore without additional memory overhead. By fine-tuning RoBERTa on the GLUE benchmark using Natural GaLore, we demonstrate significant reduction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning the TinyLlama 1.1B model for function calling using the TinyAgent framework shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset, significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo by 4%, all while using 30% less memory. All code to reproduce the results are available at: https://github.com/selfsupervised-ai/Natural-GaLore.git
KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models
The increasing sizes of large language models (LLMs) result in significant computational overhead and memory usage when adapting these models to specific tasks or domains. Various parameter-efficient fine-tuning (PEFT) methods have been devised to mitigate these challenges by training a small set of parameters for the task-specific updates of the model weights. Among PEFT methods, LoRA stands out for its simplicity and efficiency, inspiring the development of a series of variants. However, LoRA and its successors disregard the knowledge that is noisy or irrelevant to the targeted task, detrimentally impacting model performance and leading to suboptimality. To address this limitation, we introduce Knowledge-aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular value decomposition (SVD) with knowledge-aware singular values to dynamically activate knowledge based on its relevance to the task at hand. We conduct extensive experiments across a range of LLMs on tasks spanning natural language understanding (NLU), generation (NLG), instruction following, and commonsense reasoning. The experimental results demonstrate that KaSA consistently outperforms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic datasets, underscoring our method's efficacy and adaptability. The source code of our method is available at https://github.com/juyongjiang/KaSA.
MSPLoRA: A Multi-Scale Pyramid Low-Rank Adaptation for Efficient Model Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) has become an essential approach for adapting large-scale pre-trained models while reducing computational costs. Among PEFT methods, LoRA significantly reduces trainable parameters by decomposing weight updates into low-rank matrices. However, traditional LoRA applies a fixed rank across all layers, failing to account for the varying complexity of hierarchical information, which leads to inefficient adaptation and redundancy. To address this, we propose MSPLoRA (Multi-Scale Pyramid LoRA), which introduces Global Shared LoRA, Mid-Level Shared LoRA, and Layer-Specific LoRA to capture global patterns, mid-level features, and fine-grained information, respectively. This hierarchical structure reduces inter-layer redundancy while maintaining strong adaptation capability. Experiments on various NLP tasks demonstrate that MSPLoRA achieves more efficient adaptation and better performance while significantly reducing the number of trainable parameters. Furthermore, additional analyses based on Singular Value Decomposition validate its information decoupling ability, highlighting MSPLoRA as a scalable and effective optimization strategy for parameter-efficient fine-tuning in large language models. Our code is available at https://github.com/Oblivioniss/MSPLoRA.
Sparse Matrix in Large Language Model Fine-tuning
LoRA and its variants have become popular parameter-efficient fine-tuning (PEFT) methods due to their ability to avoid excessive computational costs. However, an accuracy gap often exists between PEFT methods and full fine-tuning (FT), and this gap has yet to be systematically studied. In this work, we introduce a method for selecting sparse sub-matrices that aim to minimize the performance gap between PEFT vs. full fine-tuning (FT) while also reducing both fine-tuning computational cost and memory cost. Our Sparse Matrix Tuning (SMT) method begins by identifying the most significant sub-matrices in the gradient update, updating only these blocks during the fine-tuning process. In our experiments, we demonstrate that SMT consistently surpasses other PEFT baseline (e.g. LoRA and DoRA) in fine-tuning popular large language models such as LLaMA across a broad spectrum of tasks, while reducing the GPU memory footprint by 67% compared to FT. We also examine how the performance of LoRA and DoRA tends to plateau and decline as the number of trainable parameters increases, in contrast, our SMT method does not suffer from such issue.
GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git
Low-Rank Quantization-Aware Training for LLMs
Large language models (LLMs) are omnipresent, however their practical deployment is challenging due to their ever increasing computational and memory demands. Quantization is one of the most effective ways to make them more compute and memory efficient. Quantization-aware training (QAT) methods, generally produce the best quantized performance, however it comes at the cost of potentially long training time and excessive memory usage, making it impractical when applying for LLMs. Inspired by parameter-efficient fine-tuning (PEFT) and low-rank adaptation (LoRA) literature, we propose LR-QAT -- a lightweight and memory-efficient QAT algorithm for LLMs. LR-QAT employs several components to save memory without sacrificing predictive performance: (a) low-rank auxiliary weights that are aware of the quantization grid; (b) a downcasting operator using fixed-point or double-packed integers and (c) checkpointing. Unlike most related work, our method (i) is inference-efficient, leading to no additional overhead compared to traditional PTQ; (ii) can be seen as a general extended pretraining framework, meaning that the resulting model can still be utilized for any downstream task afterwards; (iii) can be applied across a wide range of quantization settings, such as different choices quantization granularity, activation quantization, and seamlessly combined with many PTQ techniques. We apply LR-QAT to LLaMA-1/2/3 and Mistral model families and validate its effectiveness on several downstream tasks. Our method outperforms common post-training quantization (PTQ) approaches and reaches the same model performance as full-model QAT at the fraction of its memory usage. Specifically, we can train a 7B LLM on a single consumer grade GPU with 24GB of memory. Our source code is available at https://github.com/qualcomm-ai-research/LR-QAT
LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices A as random projections and sparsifies the matrices B using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
TriAdaptLoRA: Brain-Inspired Triangular Adaptive Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
The fine-tuning of Large Language Models (LLMs) is pivotal for achieving optimal performance across diverse downstream tasks. However, while full fine-tuning delivers superior results, it entails significant computational and resource costs. Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, address these challenges by reducing the number of trainable parameters, but they often struggle with rank adjustment efficiency and task-specific adaptability. We propose Triangular Adaptive Low-Rank Adaptation (TriAdaptLoRA), a novel PEFT framework inspired by neuroscience principles, which dynamically optimizes the allocation of trainable parameters. TriAdaptLoRA introduces three key innovations: 1) a triangular split of transformation matrices into lower and upper triangular components to maximize parameter utilization, 2) a parameter importance metric based on normalized Frobenius norms for efficient adaptation, and 3) an adaptive rank-growth strategy governed by dynamic thresholds, allowing flexible parameter allocation across training steps. Experiments conducted on a variety of natural language understanding and generation tasks demonstrate that TriAdaptLoRA consistently outperforms existing PEFT methods. It achieves superior performance, enhanced stability, and reduced computational overhead, particularly under linear threshold-driven rank growth. These results highlight its efficacy as a scalable and resource-efficient solution for fine-tuning LLMs.
SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values
Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks. However, fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, mitigate this issue by adjusting only a small subset of parameters. Nevertheless, these methods typically employ random initialization for low-rank matrices, which can lead to inefficiencies in gradient descent and diminished generalizability due to suboptimal starting points. To address these limitations, we propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to initialize low-rank matrices using critical singular values as trainable parameters. Specifically, SVFit performs SVD on the pre-trained weight matrix to obtain the best rank-r approximation matrix, emphasizing the most critical singular values that capture over 99% of the matrix's information. These top-r singular values are then used as trainable parameters to scale the fundamental subspaces of the matrix, facilitating rapid domain adaptation. Extensive experiments across various pre-trained models in natural language understanding, text-to-image generation, and image classification tasks reveal that SVFit outperforms LoRA while requiring 16 times fewer trainable parameters.
DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution
Fine-tuning large-scale pre-trained models is inherently a resource-intensive task. While it can enhance the capabilities of the model, it also incurs substantial computational costs, posing challenges to the practical application of downstream tasks. Existing parameter-efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation (LoRA) rely on a bypass framework that ignores the differential parameter budget requirements across weight matrices, which may lead to suboptimal fine-tuning outcomes. To address this issue, we introduce the Dynamic Low-Rank Adaptation (DoRA) method. DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget based on their importance to specific tasks during training, which makes the most of the limited parameter budget. Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning, and outperform various strong baselines with the same storage parameter budget. Our code is available at https://github.com/MIkumikumi0116/DoRA
MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning
Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods. However, they introduce significant latency in multi-tenant settings due to the LoRA modules and MOE routers added to multiple linear modules in the Transformer layer. To address this issue, we propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant. MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism. This mechanism calculates expert routing results once before generating the first new token and reuses these results for subsequent tokens, reducing latency. Extensive experiments and analysis on commonsense reasoning tasks, math reasoning tasks, and widely used LLM evaluation benchmarks demonstrate that MiLoRA consistently outperforms strong PEFT baselines with comparable tunable parameter budgets. Additionally, MiLoRA significantly reduces latency in multi-tenant settings compared to previous LoRA-based methods.
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning
Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts row and column-wise sparse low-rank adaptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.
RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization
Low-Rank Adaptation (LoRA), as a representative Parameter-Efficient Fine-Tuning (PEFT)method, significantly enhances the training efficiency by updating only a small portion of the weights in Large Language Models (LLMs). Recently, weight-only quantization techniques have also been applied to LoRA methods to reduce the memory footprint of fine-tuning. However, applying weight-activation quantization to the LoRA pipeline is under-explored, and we observe substantial performance degradation primarily due to the presence of activation outliers. In this work, we propose RoLoRA, the first LoRA-based scheme for effective weight-activation quantization. RoLoRA utilizes rotation for outlier elimination and proposes rotation-aware fine-tuning to preserve the outlier-free characteristics in rotated LLMs. Experimental results show RoLoRA consistently improves low-bit LoRA convergence and post-training quantization robustness in weight-activation settings. We evaluate RoLoRA across LLaMA2-7B/13B, LLaMA3-8B models, achieving up to 29.5% absolute accuracy gain of 4-bit weight-activation quantized LLaMA2- 13B on commonsense reasoning tasks compared to LoRA baseline. We further demonstrate its effectiveness on Large Multimodal Models (LLaVA-1.5-7B). Codes are available at https://github.com/HuangOwen/RoLoRA
DoRA: Weight-Decomposed Low-Rank Adaptation
Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding.
ResLoRA: Identity Residual Mapping in Low-Rank Adaption
As one of the most popular parameter-efficient fine-tuning (PEFT) methods, low-rank adaptation (LoRA) is commonly applied to fine-tune large language models (LLMs). However, updating the weights of LoRA blocks effectively and expeditiously is challenging due to the long calculation path in the original model. To address this, we propose ResLoRA, an improved framework of LoRA. By adding residual paths during training and using merging approaches to eliminate these extra paths during inference, our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA. The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method. To the best of our knowledge, ResLoRA is the first work that combines the residual path with LoRA. The code of our method is available at https://github.com/microsoft/LMOps/tree/main/reslora .
Introducing Routing Functions to Vision-Language Parameter-Efficient Fine-Tuning with Low-Rank Bottlenecks
Mainstream parameter-efficient fine-tuning (PEFT) methods, such as LoRA or Adapter, project a model's hidden states to a lower dimension, allowing pre-trained models to adapt to new data through this low-rank bottleneck. However, PEFT tasks involving multiple modalities, like vision-language (VL) tasks, require not only adaptation to new data but also learning the relationship between different modalities. Targeting at VL PEFT tasks, we propose a family of operations, called routing functions, to enhance VL alignment in the low-rank bottlenecks. The routing functions adopt linear operations and do not introduce new trainable parameters. In-depth analyses are conducted to study their behavior. In various VL PEFT settings, the routing functions significantly improve performance of the original PEFT methods, achieving over 20% improvement on VQAv2 (RoBERTa_{large}+ViT-L/16) and 30% on COCO Captioning (GPT2-medium+ViT-L/16). Also when fine-tuning a pre-trained multimodal model such as CLIP-BART, we observe smaller but consistent improvements across a range of VL PEFT tasks.
HD-PiSSA: High-Rank Distributed Orthogonal Adaptation
Existing parameter-efficient fine-tuning (PEFT) methods for large language models (LLMs), such as LoRA and PiSSA, constrain model updates to low-rank subspaces, limiting their expressiveness and leading to suboptimal performance on complex tasks. To address this, we introduce High-rank Distributed PiSSA (HD-PiSSA), a distributed PEFT approach that initializes orthogonal adapters across different devices and aggregates their delta updates collectively on W for fine-tuning. Unlike Data Parallel LoRA or PiSSA, which maintain identical adapters across all devices, HD-PiSSA assigns different principal components of the pre-trained weights to each GPU, significantly expanding the range of update directions. This results in over 16x higher effective updated ranks than data-parallel LoRA or PiSSA when fine-tuning on 8 GPUs with the same per-device adapter rank. Empirically, we evaluate HD-PiSSA across various challenging downstream tasks, including mathematics, code generation, and multi-task learning. In the multi-task setting, HD-PiSSA achieves average gains of 10.0 absolute points (14.63%) over LoRA and 4.98 points (6.60%) over PiSSA across 12 benchmarks, demonstrating its benefits from the extra optimization flexibility.
NLoRA: Nyström-Initiated Low-Rank Adaptation for Large Language Models
Parameter-efficient fine-tuning (PEFT) is essential for adapting large language models (LLMs), with low-rank adaptation (LoRA) being the most popular approach. However, LoRA suffers from slow convergence, and some recent LoRA variants, such as PiSSA, primarily rely on Singular Value Decomposition (SVD) for initialization, leading to expensive computation. To mitigate these problems, we use the Nystr\"om method, which follows a three-matrix manipulation. We first introduce StructuredLoRA (SLoRA), which investigates adding a small intermediate matrix between the low-rank matrices A and B. Secondly, we propose Nystr\"omLoRA (NLoRA), which leverages Nystr\"om-based initialization for SLoRA to improve its effectiveness and efficiency. Finally, we propose IntermediateTune (IntTune), which explores fine-tuning exclusively on the intermediate matrix of NLoRA to further boost LLM efficiency. We evaluate our methods on five natural language generation (NLG) tasks and eight natural language understanding (NLU) tasks. On GSM8K, SLoRA and NLoRA achieve accuracies of 56.48% and 57.70%, surpassing LoRA by 33.52% and 36.41%, with only 3.67 million additional trainable parameters. IntTune improves average NLG performance over LoRA by 7.45% while using only 1.25% of its parameters. These results demonstrate the efficiency and effectiveness of our approach in enhancing model performance with minimal parameter overhead.
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Popular parameter-efficient fine-tuning (PEFT) methods, such as LoRA and its variants, freeze pre-trained model weights \(W\) and inject learnable matrices \(\Delta W\). These \(\Delta W\) matrices are structured for efficient parameterization, often using techniques like low-rank approximations or scaling vectors. However, these methods typically show a performance gap compared to full fine-tuning. Although recent PEFT methods have narrowed this gap, they do so at the cost of additional learnable parameters. We propose SVFT, a simple approach that fundamentally differs from existing methods: the structure imposed on \(\Delta W\) depends on the specific weight matrix \(W\). Specifically, SVFT updates \(W\) as a sparse combination of outer products of its singular vectors, training only the coefficients (scales) of these sparse combinations. This approach allows fine-grained control over expressivity through the number of coefficients. Extensive experiments on language and vision benchmarks show that SVFT recovers up to 96% of full fine-tuning performance while training only 0.006 to 0.25% of parameters, outperforming existing methods that only recover up to 85% performance using 0.03 to 0.8% of the trainable parameter budget.
Multitask Multilingual Model Adaptation with Featurized Low-Rank Mixtures
Adapting pretrained large language models (LLMs) to various downstream tasks in tens or hundreds of human languages is computationally expensive. Parameter-efficient fine-tuning (PEFT) significantly reduces the adaptation cost, by tuning only a small amount of parameters. However, directly applying PEFT methods such as LoRA (Hu et al., 2022) on diverse dataset mixtures could lead to suboptimal performance due to limited parameter capacity and negative interference among different datasets. In this work, we propose Featurized Low-rank Mixtures (FLix), a novel PEFT method designed for effective multitask multilingual tuning. FLix associates each unique dataset feature, such as the dataset's language or task, with its own low-rank weight update parameters. By composing feature-specific parameters for each dataset, FLix can accommodate diverse dataset mixtures and generalize better to unseen datasets. Our experiments show that FLix leads to significant improvements over a variety of tasks for both supervised learning and zero-shot settings using different training data mixtures.
Scaling Laws for Forgetting When Fine-Tuning Large Language Models
We study and quantify the problem of forgetting when fine-tuning pre-trained large language models (LLMs) on a downstream task. We find that parameter-efficient fine-tuning (PEFT) strategies, such as Low-Rank Adapters (LoRA), still suffer from catastrophic forgetting. In particular, we identify a strong inverse linear relationship between the fine-tuning performance and the amount of forgetting when fine-tuning LLMs with LoRA. We further obtain precise scaling laws that show forgetting increases as a shifted power law in the number of parameters fine-tuned and the number of update steps. We also examine the impact of forgetting on knowledge, reasoning, and the safety guardrails trained into Llama 2 7B chat. Our study suggests that forgetting cannot be avoided through early stopping or by varying the number of parameters fine-tuned. We believe this opens up an important safety-critical direction for future research to evaluate and develop fine-tuning schemes which mitigate forgetting
Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
The advent of large language models (LLMs) like GitHub Copilot has significantly enhanced programmers' productivity, particularly in code generation. However, these models often struggle with real-world tasks without fine-tuning. As LLMs grow larger and more performant, fine-tuning for specialized tasks becomes increasingly expensive. Parameter-efficient fine-tuning (PEFT) methods, which fine-tune only a subset of model parameters, offer a promising solution by reducing the computational costs of tuning LLMs while maintaining their performance. Existing studies have explored using PEFT and LLMs for various code-related tasks and found that the effectiveness of PEFT techniques is task-dependent. The application of PEFT techniques in unit test generation remains underexplored. The state-of-the-art is limited to using LLMs with full fine-tuning to generate unit tests. This paper investigates both full fine-tuning and various PEFT methods, including LoRA, (IA)^3, and prompt tuning, across different model architectures and sizes. We use well-established benchmark datasets to evaluate their effectiveness in unit test generation. Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation, making specialized fine-tuning more accessible and cost-effective. Notably, prompt tuning is the most effective in terms of cost and resource utilization, while LoRA approaches the effectiveness of full fine-tuning in several cases.
MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning for Large Language Models
Fine-tuning is often necessary to enhance the adaptability of Large Language Models (LLM) to downstream tasks. Nonetheless, the process of updating billions of parameters demands significant computational resources and training time, which poses a substantial obstacle to the widespread application of large-scale models in various scenarios. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) has emerged as a prominent paradigm in recent research. However, current PEFT approaches that employ a limited set of global parameters (such as LoRA, which adds low-rank approximation matrices to all weights) face challenges in flexibly combining different computational modules in downstream tasks. In this work, we introduce a novel PEFT method: MoELoRA. We consider LoRA as Mixture of Experts (MoE), and to mitigate the random routing phenomenon observed in MoE, we propose the utilization of contrastive learning to encourage experts to learn distinct features. We conducted experiments on 11 tasks in math reasoning and common-sense reasoning benchmarks. With the same number of parameters, our approach outperforms LoRA significantly. In math reasoning, MoELoRA achieved an average performance that was 4.2% higher than LoRA, and demonstrated competitive performance compared to the 175B GPT-3.5 on several benchmarks.
IncreLoRA: Incremental Parameter Allocation Method for Parameter-Efficient Fine-tuning
With the increasing size of pre-trained language models (PLMs), fine-tuning all the parameters in the model is not efficient, especially when there are a large number of downstream tasks, which incur significant training and storage costs. Many parameter-efficient fine-tuning (PEFT) approaches have been proposed, among which, Low-Rank Adaptation (LoRA) is a representative approach that injects trainable rank decomposition matrices into every target module. Yet LoRA ignores the importance of parameters in different modules. To address this problem, many works have been proposed to prune the parameters of LoRA. However, under limited training conditions, the upper bound of the rank of the pruned parameter matrix is still affected by the preset values. We, therefore, propose IncreLoRA, an incremental parameter allocation method that adaptively adds trainable parameters during training based on the importance scores of each module. This approach is different from the pruning method as it is not limited by the initial number of training parameters, and each parameter matrix has a higher rank upper bound for the same training overhead. We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA. The results show that our method owns higher parameter efficiency, especially when under the low-resource settings where our method significantly outperforms the baselines. Our code is publicly available.
BoRA: Bi-dimensional Weight-Decomposed Low-Rank Adaptation
In recent years, Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) have significantly enhanced the adaptability of large-scale pre-trained models. Weight-Decomposed Low-Rank Adaptation (DoRA) improves upon LoRA by separating the magnitude and direction components of the weight matrix, leading to superior performance. However, DoRA's improvements are limited to the vertical dimension, resulting in an asymmetrical pattern between horizontal and vertical dimensions. This paper introduces BoRA, an innovative extension of LoRA and DoRA, characterized by symmetrical properties across horizontal and vertical dimensions. Our approach optimizes the weight matrix symmetrically by adjusting both column-wise and row-wise magnitudes. Extensive experiments demonstrate that BoRA surpasses state-of-the-art PEFT methods, including LoRA and DoRA, achieving superior results across various benchmarks.
Less Could Be Better: Parameter-efficient Fine-tuning Advances Medical Vision Foundation Models
Parameter-efficient fine-tuning (PEFT) that was initially developed for exploiting pre-trained large language models has recently emerged as an effective approach to perform transfer learning on computer vision tasks. However, the effectiveness of PEFT on medical vision foundation models is still unclear and remains to be explored. As a proof of concept, we conducted a detailed empirical study on applying PEFT to chest radiography foundation models. Specifically, we delved into LoRA, a representative PEFT method, and compared it against full-parameter fine-tuning (FFT) on two self-supervised radiography foundation models across three well-established chest radiograph datasets. Our results showed that LoRA outperformed FFT in 13 out of 18 transfer learning tasks by at most 2.9% using fewer than 1% tunable parameters. Combining LoRA with foundation models, we set up new state-of-the-art on a range of data-efficient learning tasks, such as an AUROC score of 80.6% using 1% labeled data on NIH ChestX-ray14. We hope this study can evoke more attention from the community in the use of PEFT for transfer learning on medical imaging tasks. Code and models are available at https://github.com/RL4M/MED-PEFT.
Efficiency at Scale: Investigating the Performance of Diminutive Language Models in Clinical Tasks
The entry of large language models (LLMs) into research and commercial spaces has led to a trend of ever-larger models, with initial promises of generalisability, followed by a widespread desire to downsize and create specialised models without the need for complete fine-tuning, using Parameter Efficient Fine-tuning (PEFT) methods. We present an investigation into the suitability of different PEFT methods to clinical decision-making tasks, across a range of model sizes, including extremely small models with as few as 25 million parameters. Our analysis shows that the performance of most PEFT approaches varies significantly from one task to another, with the exception of LoRA, which maintains relatively high performance across all model sizes and tasks, typically approaching or matching full fine-tuned performance. The effectiveness of PEFT methods in the clinical domain is evident, particularly for specialised models which can operate on low-cost, in-house computing infrastructure. The advantages of these models, in terms of speed and reduced training costs, dramatically outweighs any performance gain from large foundation LLMs. Furthermore, we highlight how domain-specific pre-training interacts with PEFT methods and model size, and discuss how these factors interplay to provide the best efficiency-performance trade-off. Full code available at: tbd.
DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation
The Parameter-Efficient Fine-Tuning (PEFT) methods have been extensively researched for large language models in the downstream tasks. Among all the existing approaches, the Low-Rank Adaptation (LoRA) has gained popularity for its streamlined design by incorporating low-rank matrices into existing pre-trained models. Though effective, LoRA allocates every module an identical low-rank matrix, which ignores the varying properties and contributions across different components. Moreover, the existing adaptive LoRA solutions rely highly on intuitive importance scoring indicators to adjust the interior rank of the decomposition matrices. In this paper, we propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA. At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning. We explain how the designed matrix impacts the convergence rate and generalization capability of a pre-trained model. Furthermore, we construct the DAM via continuous relaxation and discretization with weight-sharing optimizations. We fully implement our DiffoRA and design comprehensive experiments to evaluate its performance. The experimental results demonstrate that our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning
Recent efforts to scale Transformer models have demonstrated rapid progress across a wide range of tasks (Wei et al., 2022). However, fine-tuning these models for downstream tasks is expensive due to their large parameter counts. Parameter-efficient fine-tuning (PEFT) approaches have emerged as a viable alternative by allowing us to fine-tune models by updating only a small number of parameters. In this work, we propose a general framework for parameter efficient fine-tuning (PEFT), based on structured unrestricted-rank matrices (SURM) which can serve as a drop-in replacement for popular approaches such as Adapters and LoRA. Unlike other methods like LoRA, SURMs provides more flexibility in finding the right balance between compactness and expressiveness. This is achieved by using low displacement rank matrices (LDRMs), which hasn't been used in this context before. SURMs remain competitive with baselines, often providing significant quality improvements while using a smaller parameter budget. SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA. It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
Exploring the Benefits of Differentially Private Pre-training and Parameter-Efficient Fine-tuning for Table Transformers
For machine learning with tabular data, Table Transformer (TabTransformer) is a state-of-the-art neural network model, while Differential Privacy (DP) is an essential component to ensure data privacy. In this paper, we explore the benefits of combining these two aspects together in the scenario of transfer learning -- differentially private pre-training and fine-tuning of TabTransformers with a variety of parameter-efficient fine-tuning (PEFT) methods, including Adapter, LoRA, and Prompt Tuning. Our extensive experiments on the ACSIncome dataset show that these PEFT methods outperform traditional approaches in terms of the accuracy of the downstream task and the number of trainable parameters, thus achieving an improved trade-off among parameter efficiency, privacy, and accuracy. Our code is available at github.com/IBM/DP-TabTransformer.
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Standard fine-tuning of large pre-trained language models (PLMs) for downstream tasks requires updating hundreds of millions to billions of parameters, and storing a large copy of the PLM weights for every task resulting in increased cost for storing, sharing and serving the models. To address this, parameter-efficient fine-tuning (PEFT) techniques were introduced where small trainable components are injected in the PLM and updated during fine-tuning. We propose AdaMix as a general PEFT method that tunes a mixture of adaptation modules -- given the underlying PEFT method of choice -- introduced in each Transformer layer while keeping most of the PLM weights frozen. For instance, AdaMix can leverage a mixture of adapters like Houlsby or a mixture of low rank decomposition matrices like LoRA to improve downstream task performance over the corresponding PEFT methods for fully supervised and few-shot NLU and NLG tasks. Further, we design AdaMix such that it matches the same computational cost and the number of tunable parameters as the underlying PEFT method. By only tuning 0.1-0.2% of PLM parameters, we show that AdaMix outperforms SOTA parameter-efficient fine-tuning and full model fine-tuning for both NLU and NLG tasks.
SaLoRA: Safety-Alignment Preserved Low-Rank Adaptation
As advancements in large language models (LLMs) continue and the demand for personalized models increases, parameter-efficient fine-tuning (PEFT) methods (e.g., LoRA) will become essential due to their efficiency in reducing computation costs. However, recent studies have raised alarming concerns that LoRA fine-tuning could potentially compromise the safety alignment in LLMs, posing significant risks for the model owner. In this paper, we first investigate the underlying mechanism by analyzing the changes in safety alignment related features before and after fine-tuning. Then, we propose a fixed safety module calculated by safety data and a task-specific initialization for trainable parameters in low-rank adaptations, termed Safety-alignment preserved Low-Rank Adaptation (SaLoRA). Unlike previous LoRA methods and their variants, SaLoRA enables targeted modifications to LLMs without disrupting their original alignments. Our experiments show that SaLoRA outperforms various adapters-based approaches across various evaluation metrics in different fine-tuning tasks.
SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers
The performance of Transformer models has been enhanced by increasing the number of parameters and the length of the processed text. Consequently, fine-tuning the entire model becomes a memory-intensive process. High-performance methods for parameter-efficient fine-tuning (PEFT) typically work with Attention blocks and often overlook MLP blocks, which contain about half of the model parameters. We propose a new selective PEFT method, namely SparseGrad, that performs well on MLP blocks. We transfer layer gradients to a space where only about 1\% of the layer's elements remain significant. By converting gradients into a sparse structure, we reduce the number of updated parameters. We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task. In these experiments, with identical memory requirements, our method outperforms LoRA and MeProp, robust popular state-of-the-art PEFT approaches.
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections
Parameter-efficient finetuning (PEFT) has become ubiquitous to adapt foundation models to downstream task requirements while retaining their generalization ability. However, the amount of additionally introduced parameters and compute for successful adaptation and hyperparameter searches can explode quickly, especially when deployed at scale to serve numerous individual requests. To ensure effective, parameter-efficient, and hyperparameter-robust adaptation, we propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections. By design, ETHER transformations require a minimal number of parameters, are less likely to deteriorate model performance, and exhibit robustness to hyperparameter and learning rate choices. In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters (sim10-100 times lower than LoRA or OFT) across multiple image synthesis and natural language tasks without exhaustive hyperparameter tuning. Finally, we investigate the recent emphasis on Hyperspherical Energy retention for adaptation and raise questions on its practical utility. The code is available at https://github.com/mwbini/ether.
Shears: Unstructured Sparsity with Neural Low-rank Adapter Search
Recently, several approaches successfully demonstrated that weight-sharing Neural Architecture Search (NAS) can effectively explore a search space of elastic low-rank adapters (LoRA), allowing the parameter-efficient fine-tuning (PEFT) and compression of large language models. In this paper, we introduce a novel approach called Shears, demonstrating how the integration of cost-effective sparsity and a proposed Neural Low-rank adapter Search (NLS) algorithm can further improve the efficiency of PEFT approaches. Results demonstrate the benefits of Shears compared to other methods, reaching high sparsity levels while improving or with little drop in accuracy, utilizing a single GPU for a pair of hours.
AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Standard fine-tuning of large pre-trained language models (PLMs) for downstream tasks requires updating hundreds of millions to billions of parameters, and storing a large copy of the PLM weights for every task resulting in increased cost for storing, sharing and serving the models. To address this, parameter-efficient fine-tuning (PEFT) techniques were introduced where small trainable components are injected in the PLM and updated during fine-tuning. We propose AdaMix as a general PEFT method that tunes a mixture of adaptation modules -- given the underlying PEFT method of choice -- introduced in each Transformer layer while keeping most of the PLM weights frozen. For instance, AdaMix can leverage a mixture of adapters like Houlsby or a mixture of low rank decomposition matrices like LoRA to improve downstream task performance over the corresponding PEFT methods for fully supervised and few-shot NLU and NLG tasks. Further, we design AdaMix such that it matches the same computational cost and the number of tunable parameters as the underlying PEFT method. By only tuning 0.1-0.2% of PLM parameters, we show that AdaMix outperforms SOTA parameter-efficient fine-tuning and full model fine-tuning for both NLU and NLG tasks.
Exploring the Capabilities of LLMs for Code Change Related Tasks
Developers deal with code-change-related tasks daily, e.g., reviewing code. Pre-trained code and code-change-oriented models have been adapted to help developers with such tasks. Recently, large language models (LLMs) have shown their effectiveness in code-related tasks. However, existing LLMs for code focus on general code syntax and semantics rather than the differences between two code versions. Thus, it is an open question how LLMs perform on code-change-related tasks. To answer this question, we conduct an empirical study using \textgreater 1B parameters LLMs on three code-change-related tasks, i.e., code review generation, commit message generation, and just-in-time comment update, with in-context learning (ICL) and parameter-efficient fine-tuning (PEFT, including LoRA and prefix-tuning). We observe that the performance of LLMs is poor without examples and generally improves with examples, but more examples do not always lead to better performance. LLMs tuned with LoRA have comparable performance to the state-of-the-art small pre-trained models. Larger models are not always better, but Llama~2 and Code~Llama families are always the best. The best LLMs outperform small pre-trained models on the code changes that only modify comments and perform comparably on other code changes. We suggest future work should focus more on guiding LLMs to learn the knowledge specific to the changes related to code rather than comments for code-change-related tasks.