Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMaskingDepth: Masked Consistency Regularization for Semi-supervised Monocular Depth Estimation
We propose MaskingDepth, a novel semi-supervised learning framework for monocular depth estimation to mitigate the reliance on large ground-truth depth quantities. MaskingDepth is designed to enforce consistency between the strongly-augmented unlabeled data and the pseudo-labels derived from weakly-augmented unlabeled data, which enables learning depth without supervision. In this framework, a novel data augmentation is proposed to take the advantage of a naive masking strategy as an augmentation, while avoiding its scale ambiguity problem between depths from weakly- and strongly-augmented branches and risk of missing small-scale instances. To only retain high-confident depth predictions from the weakly-augmented branch as pseudo-labels, we also present an uncertainty estimation technique, which is used to define robust consistency regularization. Experiments on KITTI and NYU-Depth-v2 datasets demonstrate the effectiveness of each component, its robustness to the use of fewer depth-annotated images, and superior performance compared to other state-of-the-art semi-supervised methods for monocular depth estimation. Furthermore, we show our method can be easily extended to domain adaptation task. Our code is available at https://github.com/KU-CVLAB/MaskingDepth.
Depth Anything V2
This work presents Depth Anything V2. Without pursuing fancy techniques, we aim to reveal crucial findings to pave the way towards building a powerful monocular depth estimation model. Notably, compared with V1, this version produces much finer and more robust depth predictions through three key practices: 1) replacing all labeled real images with synthetic images, 2) scaling up the capacity of our teacher model, and 3) teaching student models via the bridge of large-scale pseudo-labeled real images. Compared with the latest models built on Stable Diffusion, our models are significantly more efficient (more than 10x faster) and more accurate. We offer models of different scales (ranging from 25M to 1.3B params) to support extensive scenarios. Benefiting from their strong generalization capability, we fine-tune them with metric depth labels to obtain our metric depth models. In addition to our models, considering the limited diversity and frequent noise in current test sets, we construct a versatile evaluation benchmark with precise annotations and diverse scenes to facilitate future research.
Seurat: From Moving Points to Depth
Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
Amodal Depth Anything: Amodal Depth Estimation in the Wild
Amodal depth estimation aims to predict the depth of occluded (invisible) parts of objects in a scene. This task addresses the question of whether models can effectively perceive the geometry of occluded regions based on visible cues. Prior methods primarily rely on synthetic datasets and focus on metric depth estimation, limiting their generalization to real-world settings due to domain shifts and scalability challenges. In this paper, we propose a novel formulation of amodal depth estimation in the wild, focusing on relative depth prediction to improve model generalization across diverse natural images. We introduce a new large-scale dataset, Amodal Depth In the Wild (ADIW), created using a scalable pipeline that leverages segmentation datasets and compositing techniques. Depth maps are generated using large pre-trained depth models, and a scale-and-shift alignment strategy is employed to refine and blend depth predictions, ensuring consistency in ground-truth annotations. To tackle the amodal depth task, we present two complementary frameworks: Amodal-DAV2, a deterministic model based on Depth Anything V2, and Amodal-DepthFM, a generative model that integrates conditional flow matching principles. Our proposed frameworks effectively leverage the capabilities of large pre-trained models with minimal modifications to achieve high-quality amodal depth predictions. Experiments validate our design choices, demonstrating the flexibility of our models in generating diverse, plausible depth structures for occluded regions. Our method achieves a 69.5% improvement in accuracy over the previous SoTA on the ADIW dataset.
Radar Meets Vision: Robustifying Monocular Metric Depth Prediction for Mobile Robotics
Mobile robots require accurate and robust depth measurements to understand and interact with the environment. While existing sensing modalities address this problem to some extent, recent research on monocular depth estimation has leveraged the information richness, yet low cost and simplicity of monocular cameras. These works have shown significant generalization capabilities, mainly in automotive and indoor settings. However, robots often operate in environments with limited scale cues, self-similar appearances, and low texture. In this work, we encode measurements from a low-cost mmWave radar into the input space of a state-of-the-art monocular depth estimation model. Despite the radar's extreme point cloud sparsity, our method demonstrates generalization and robustness across industrial and outdoor experiments. Our approach reduces the absolute relative error of depth predictions by 9-64% across a range of unseen, real-world validation datasets. Importantly, we maintain consistency of all performance metrics across all experiments and scene depths where current vision-only approaches fail. We further address the present deficit of training data in mobile robotics environments by introducing a novel methodology for synthesizing rendered, realistic learning datasets based on photogrammetric data that simulate the radar sensor observations for training. Our code, datasets, and pre-trained networks are made available at https://github.com/ethz-asl/radarmeetsvision.
Robust Geometry-Preserving Depth Estimation Using Differentiable Rendering
In this study, we address the challenge of 3D scene structure recovery from monocular depth estimation. While traditional depth estimation methods leverage labeled datasets to directly predict absolute depth, recent advancements advocate for mix-dataset training, enhancing generalization across diverse scenes. However, such mixed dataset training yields depth predictions only up to an unknown scale and shift, hindering accurate 3D reconstructions. Existing solutions necessitate extra 3D datasets or geometry-complete depth annotations, constraints that limit their versatility. In this paper, we propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations. To produce realistic 3D structures, we render novel views of the reconstructed scenes and design loss functions to promote depth estimation consistency across different views. Comprehensive experiments underscore our framework's superior generalization capabilities, surpassing existing state-of-the-art methods on several benchmark datasets without leveraging extra training information. Moreover, our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients using solely unlabeled images.
The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation
Accurate depth estimation under out-of-distribution (OoD) scenarios, such as adverse weather conditions, sensor failure, and noise contamination, is desirable for safety-critical applications. Existing depth estimation systems, however, suffer inevitably from real-world corruptions and perturbations and are struggled to provide reliable depth predictions under such cases. In this paper, we summarize the winning solutions from the RoboDepth Challenge -- an academic competition designed to facilitate and advance robust OoD depth estimation. This challenge was developed based on the newly established KITTI-C and NYUDepth2-C benchmarks. We hosted two stand-alone tracks, with an emphasis on robust self-supervised and robust fully-supervised depth estimation, respectively. Out of more than two hundred participants, nine unique and top-performing solutions have appeared, with novel designs ranging from the following aspects: spatial- and frequency-domain augmentations, masked image modeling, image restoration and super-resolution, adversarial training, diffusion-based noise suppression, vision-language pre-training, learned model ensembling, and hierarchical feature enhancement. Extensive experimental analyses along with insightful observations are drawn to better understand the rationale behind each design. We hope this challenge could lay a solid foundation for future research on robust and reliable depth estimation and beyond. The datasets, competition toolkit, workshop recordings, and source code from the winning teams are publicly available on the challenge website.
MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain, e.g., synthetic data, and an unlabeled target domain. We observe that current UDA methods show inferior results on fine structures and tend to oversegment objects with ambiguous appearance. To address these shortcomings, we propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries. We show that naively incorporating depth into current UDA methods does not fully exploit the potential of this complementary information. To this end, we present MICDrop, which learns a joint feature representation by masking image encoder features while inversely masking depth encoder features. With this simple yet effective complementary masking strategy, we enforce the use of both modalities when learning the joint feature representation. To aid this process, we propose a feature fusion module to improve both global as well as local information sharing while being robust to errors in the depth predictions. We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks, obtaining new state-of-the-art performances.
GRIN: Zero-Shot Metric Depth with Pixel-Level Diffusion
3D reconstruction from a single image is a long-standing problem in computer vision. Learning-based methods address its inherent scale ambiguity by leveraging increasingly large labeled and unlabeled datasets, to produce geometric priors capable of generating accurate predictions across domains. As a result, state of the art approaches show impressive performance in zero-shot relative and metric depth estimation. Recently, diffusion models have exhibited remarkable scalability and generalizable properties in their learned representations. However, because these models repurpose tools originally designed for image generation, they can only operate on dense ground-truth, which is not available for most depth labels, especially in real-world settings. In this paper we present GRIN, an efficient diffusion model designed to ingest sparse unstructured training data. We use image features with 3D geometric positional encodings to condition the diffusion process both globally and locally, generating depth predictions at a pixel-level. With comprehensive experiments across eight indoor and outdoor datasets, we show that GRIN establishes a new state of the art in zero-shot metric monocular depth estimation even when trained from scratch.
Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions
We present a novel approach designed to address the complexities posed by challenging, out-of-distribution data in the single-image depth estimation task. Starting with images that facilitate depth prediction due to the absence of unfavorable factors, we systematically generate new, user-defined scenes with a comprehensive set of challenges and associated depth information. This is achieved by leveraging cutting-edge text-to-image diffusion models with depth-aware control, known for synthesizing high-quality image content from textual prompts while preserving the coherence of 3D structure between generated and source imagery. Subsequent fine-tuning of any monocular depth network is carried out through a self-distillation protocol that takes into account images generated using our strategy and its own depth predictions on simple, unchallenging scenes. Experiments on benchmarks tailored for our purposes demonstrate the effectiveness and versatility of our proposal.
Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator
Monocular depth estimation (MDE) aims to predict scene depth from a single RGB image and plays a crucial role in 3D scene understanding. Recent advances in zero-shot MDE leverage normalized depth representations and distillation-based learning to improve generalization across diverse scenes. However, current depth normalization methods for distillation, relying on global normalization, can amplify noisy pseudo-labels, reducing distillation effectiveness. In this paper, we systematically analyze the impact of different depth normalization strategies on pseudo-label distillation. Based on our findings, we propose Cross-Context Distillation, which integrates global and local depth cues to enhance pseudo-label quality. Additionally, we introduce a multi-teacher distillation framework that leverages complementary strengths of different depth estimation models, leading to more robust and accurate depth predictions. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, both quantitatively and qualitatively.
DynamicStereo: Consistent Dynamic Depth from Stereo Videos
We consider the problem of reconstructing a dynamic scene observed from a stereo camera. Most existing methods for depth from stereo treat different stereo frames independently, leading to temporally inconsistent depth predictions. Temporal consistency is especially important for immersive AR or VR scenarios, where flickering greatly diminishes the user experience. We propose DynamicStereo, a novel transformer-based architecture to estimate disparity for stereo videos. The network learns to pool information from neighboring frames to improve the temporal consistency of its predictions. Our architecture is designed to process stereo videos efficiently through divided attention layers. We also introduce Dynamic Replica, a new benchmark dataset containing synthetic videos of people and animals in scanned environments, which provides complementary training and evaluation data for dynamic stereo closer to real applications than existing datasets. Training with this dataset further improves the quality of predictions of our proposed DynamicStereo as well as prior methods. Finally, it acts as a benchmark for consistent stereo methods.
FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models
3D scene reconstruction is a long-standing vision task. Existing approaches can be categorized into geometry-based and learning-based methods. The former leverages multi-view geometry but can face catastrophic failures due to the reliance on accurate pixel correspondence across views. The latter was proffered to mitigate these issues by learning 2D or 3D representation directly. However, without a large-scale video or 3D training data, it can hardly generalize to diverse real-world scenarios due to the presence of tens of millions or even billions of optimization parameters in the deep network. Recently, robust monocular depth estimation models trained with large-scale datasets have been proven to possess weak 3D geometry prior, but they are insufficient for reconstruction due to the unknown camera parameters, the affine-invariant property, and inter-frame inconsistency. Here, we propose a novel test-time optimization approach that can transfer the robustness of affine-invariant depth models such as LeReS to challenging diverse scenes while ensuring inter-frame consistency, with only dozens of parameters to optimize per video frame. Specifically, our approach involves freezing the pre-trained affine-invariant depth model's depth predictions, rectifying them by optimizing the unknown scale-shift values with a geometric consistency alignment module, and employing the resulting scale-consistent depth maps to robustly obtain camera poses and achieve dense scene reconstruction, even in low-texture regions. Experiments show that our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis
Novel view synthesis of urban scenes is essential for autonomous driving-related applications.Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization. We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner. Unlike existing feed-forward, pixel-aligned 3DGS methods, which often suffer from issues like multi-view inconsistencies and duplicated content, our approach predicts 3D Gaussians across multiple frames within a unified volume using a 3D convolutional network. This is achieved by initializing 3D Gaussians with noisy depth predictions, and then refining their geometric properties in 3D space and predicting color based on 2D textures. Our model also handles distant views and the sky with a flexible hemisphere background model. This enables us to perform fast, feed-forward reconstruction while achieving real-time rendering. Experimental evaluations on the KITTI-360 and Waymo datasets show that our method achieves state-of-the-art quality compared to existing feed-forward 3DGS- and NeRF-based methods.
Monocular Occupancy Prediction for Scalable Indoor Scenes
Camera-based 3D occupancy prediction has recently garnered increasing attention in outdoor driving scenes. However, research in indoor scenes remains relatively unexplored. The core differences in indoor scenes lie in the complexity of scene scale and the variance in object size. In this paper, we propose a novel method, named ISO, for predicting indoor scene occupancy using monocular images. ISO harnesses the advantages of a pretrained depth model to achieve accurate depth predictions. Furthermore, we introduce the Dual Feature Line of Sight Projection (D-FLoSP) module within ISO, which enhances the learning of 3D voxel features. To foster further research in this domain, we introduce Occ-ScanNet, a large-scale occupancy benchmark for indoor scenes. With a dataset size 40 times larger than the NYUv2 dataset, it facilitates future scalable research in indoor scene analysis. Experimental results on both NYUv2 and Occ-ScanNet demonstrate that our method achieves state-of-the-art performance. The dataset and code are made publicly at https://github.com/hongxiaoy/ISO.git.
MonoPatchNeRF: Improving Neural Radiance Fields with Patch-based Monocular Guidance
The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for multiview stereo (MVS) benchmarks such as ETH3D. In this paper, we aim to create 3D models that provide accurate geometry and view synthesis, partially closing the large geometric performance gap between NeRF and traditional MVS methods. We propose a patch-based approach that effectively leverages monocular surface normal and relative depth predictions. The patch-based ray sampling also enables the appearance regularization of normalized cross-correlation (NCC) and structural similarity (SSIM) between randomly sampled virtual and training views. We further show that "density restrictions" based on sparse structure-from-motion points can help greatly improve geometric accuracy with a slight drop in novel view synthesis metrics. Our experiments show 4x the performance of RegNeRF and 8x that of FreeNeRF on average F1@2cm for ETH3D MVS benchmark, suggesting a fruitful research direction to improve the geometric accuracy of NeRF-based models, and sheds light on a potential future approach to enable NeRF-based optimization to eventually outperform traditional MVS.
PrimeDepth: Efficient Monocular Depth Estimation with a Stable Diffusion Preimage
This work addresses the task of zero-shot monocular depth estimation. A recent advance in this field has been the idea of utilising Text-to-Image foundation models, such as Stable Diffusion. Foundation models provide a rich and generic image representation, and therefore, little training data is required to reformulate them as a depth estimation model that predicts highly-detailed depth maps and has good generalisation capabilities. However, the realisation of this idea has so far led to approaches which are, unfortunately, highly inefficient at test-time due to the underlying iterative denoising process. In this work, we propose a different realisation of this idea and present PrimeDepth, a method that is highly efficient at test time while keeping, or even enhancing, the positive aspects of diffusion-based approaches. Our key idea is to extract from Stable Diffusion a rich, but frozen, image representation by running a single denoising step. This representation, we term preimage, is then fed into a refiner network with an architectural inductive bias, before entering the downstream task. We validate experimentally that PrimeDepth is two orders of magnitude faster than the leading diffusion-based method, Marigold, while being more robust for challenging scenarios and quantitatively marginally superior. Thereby, we reduce the gap to the currently leading data-driven approach, Depth Anything, which is still quantitatively superior, but predicts less detailed depth maps and requires 20 times more labelled data. Due to the complementary nature of our approach, even a simple averaging between PrimeDepth and Depth Anything predictions can improve upon both methods and sets a new state-of-the-art in zero-shot monocular depth estimation. In future, data-driven approaches may also benefit from integrating our preimage.
SIGNet: Semantic Instance Aided Unsupervised 3D Geometry Perception
Unsupervised learning for geometric perception (depth, optical flow, etc.) is of great interest to autonomous systems. Recent works on unsupervised learning have made considerable progress on perceiving geometry; however, they usually ignore the coherence of objects and perform poorly under scenarios with dark and noisy environments. In contrast, supervised learning algorithms, which are robust, require large labeled geometric dataset. This paper introduces SIGNet, a novel framework that provides robust geometry perception without requiring geometrically informative labels. Specifically, SIGNet integrates semantic information to make depth and flow predictions consistent with objects and robust to low lighting conditions. SIGNet is shown to improve upon the state-of-the-art unsupervised learning for depth prediction by 30% (in squared relative error). In particular, SIGNet improves the dynamic object class performance by 39% in depth prediction and 29% in flow prediction. Our code will be made available at https://github.com/mengyuest/SIGNet
Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
Joint Depth Prediction and Semantic Segmentation with Multi-View SAM
Multi-task approaches to joint depth and segmentation prediction are well-studied for monocular images. Yet, predictions from a single-view are inherently limited, while multiple views are available in many robotics applications. On the other end of the spectrum, video-based and full 3D methods require numerous frames to perform reconstruction and segmentation. With this work we propose a Multi-View Stereo (MVS) technique for depth prediction that benefits from rich semantic features of the Segment Anything Model (SAM). This enhanced depth prediction, in turn, serves as a prompt to our Transformer-based semantic segmentation decoder. We report the mutual benefit that both tasks enjoy in our quantitative and qualitative studies on the ScanNet dataset. Our approach consistently outperforms single-task MVS and segmentation models, along with multi-task monocular methods.
OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.
Depth-Adaptive Transformer
State of the art sequence-to-sequence models for large scale tasks perform a fixed number of computations for each input sequence regardless of whether it is easy or hard to process. In this paper, we train Transformer models which can make output predictions at different stages of the network and we investigate different ways to predict how much computation is required for a particular sequence. Unlike dynamic computation in Universal Transformers, which applies the same set of layers iteratively, we apply different layers at every step to adjust both the amount of computation as well as the model capacity. On IWSLT German-English translation our approach matches the accuracy of a well tuned baseline Transformer while using less than a quarter of the decoder layers.
Ray Denoising: Depth-aware Hard Negative Sampling for Multi-view 3D Object Detection
Multi-view 3D object detection systems often struggle with generating precise predictions due to the challenges in estimating depth from images, increasing redundant and incorrect detections. Our paper presents Ray Denoising, an innovative method that enhances detection accuracy by strategically sampling along camera rays to construct hard negative examples. These examples, visually challenging to differentiate from true positives, compel the model to learn depth-aware features, thereby improving its capacity to distinguish between true and false positives. Ray Denoising is designed as a plug-and-play module, compatible with any DETR-style multi-view 3D detectors, and it only minimally increases training computational costs without affecting inference speed. Our comprehensive experiments, including detailed ablation studies, consistently demonstrate that Ray Denoising outperforms strong baselines across multiple datasets. It achieves a 1.9\% improvement in mean Average Precision (mAP) over the state-of-the-art StreamPETR method on the NuScenes dataset. It shows significant performance gains on the Argoverse 2 dataset, highlighting its generalization capability. The code will be available at https://github.com/LiewFeng/RayDN.
Semantic Sensitivities and Inconsistent Predictions: Measuring the Fragility of NLI Models
Recent studies of the emergent capabilities of transformer-based Natural Language Understanding (NLU) models have indicated that they have an understanding of lexical and compositional semantics. We provide evidence that suggests these claims should be taken with a grain of salt: we find that state-of-the-art Natural Language Inference (NLI) models are sensitive towards minor semantics preserving surface-form variations, which lead to sizable inconsistent model decisions during inference. Notably, this behaviour differs from valid and in-depth comprehension of compositional semantics, however does neither emerge when evaluating model accuracy on standard benchmarks nor when probing for syntactic, monotonic, and logically robust reasoning. We propose a novel framework to measure the extent of semantic sensitivity. To this end, we evaluate NLI models on adversarially generated examples containing minor semantics-preserving surface-form input noise. This is achieved using conditional text generation, with the explicit condition that the NLI model predicts the relationship between the original and adversarial inputs as a symmetric equivalence entailment. We systematically study the effects of the phenomenon across NLI models for in- and out-of- domain settings. Our experiments show that semantic sensitivity causes performance degradations of 12.92% and 23.71% average over in- and out-of- domain settings, respectively. We further perform ablation studies, analysing this phenomenon across models, datasets, and variations in inference and show that semantic sensitivity can lead to major inconsistency within model predictions.
Towards Zero-Shot Scale-Aware Monocular Depth Estimation
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.
SVDC: Consistent Direct Time-of-Flight Video Depth Completion with Frequency Selective Fusion
Lightweight direct Time-of-Flight (dToF) sensors are ideal for 3D sensing on mobile devices. However, due to the manufacturing constraints of compact devices and the inherent physical principles of imaging, dToF depth maps are sparse and noisy. In this paper, we propose a novel video depth completion method, called SVDC, by fusing the sparse dToF data with the corresponding RGB guidance. Our method employs a multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the sparse dToF imaging. Misalignment between consecutive frames during multi-frame fusion could cause blending between object edges and the background, which results in a loss of detail. To address this, we introduce an adaptive frequency selective fusion (AFSF) module, which automatically selects convolution kernel sizes to fuse multi-frame features. Our AFSF utilizes a channel-spatial enhancement attention (CSEA) module to enhance features and generates an attention map as fusion weights. The AFSF ensures edge detail recovery while suppressing high-frequency noise in smooth regions. To further enhance temporal consistency, We propose a cross-window consistency loss to ensure consistent predictions across different windows, effectively reducing flickering. Our proposed SVDC achieves optimal accuracy and consistency on the TartanAir and Dynamic Replica datasets. Code is available at https://github.com/Lan1eve/SVDC.
SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
This research paper presents an innovative multi-task learning framework that allows concurrent depth estimation and semantic segmentation using a single camera. The proposed approach is based on a shared encoder-decoder architecture, which integrates various techniques to improve the accuracy of the depth estimation and semantic segmentation task without compromising computational efficiency. Additionally, the paper incorporates an adversarial training component, employing a Wasserstein GAN framework with a critic network, to refine model's predictions. The framework is thoroughly evaluated on two datasets - the outdoor Cityscapes dataset and the indoor NYU Depth V2 dataset - and it outperforms existing state-of-the-art methods in both segmentation and depth estimation tasks. We also conducted ablation studies to analyze the contributions of different components, including pre-training strategies, the inclusion of critics, the use of logarithmic depth scaling, and advanced image augmentations, to provide a better understanding of the proposed framework. The accompanying source code is accessible at https://github.com/PardisTaghavi/SwinMTL.
PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation
Single image depth estimation is a foundational task in computer vision and generative modeling. However, prevailing depth estimation models grapple with accommodating the increasing resolutions commonplace in today's consumer cameras and devices. Existing high-resolution strategies show promise, but they often face limitations, ranging from error propagation to the loss of high-frequency details. We present PatchFusion, a novel tile-based framework with three key components to improve the current state of the art: (1) A patch-wise fusion network that fuses a globally-consistent coarse prediction with finer, inconsistent tiled predictions via high-level feature guidance, (2) A Global-to-Local (G2L) module that adds vital context to the fusion network, discarding the need for patch selection heuristics, and (3) A Consistency-Aware Training (CAT) and Inference (CAI) approach, emphasizing patch overlap consistency and thereby eradicating the necessity for post-processing. Experiments on UnrealStereo4K, MVS-Synth, and Middleburry 2014 demonstrate that our framework can generate high-resolution depth maps with intricate details. PatchFusion is independent of the base model for depth estimation. Notably, our framework built on top of SOTA ZoeDepth brings improvements for a total of 17.3% and 29.4% in terms of the root mean squared error (RMSE) on UnrealStereo4K and MVS-Synth, respectively.
How Will It Drape Like? Capturing Fabric Mechanics from Depth Images
We propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim-to-real loop.Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.
Mask4Former: Mask Transformer for 4D Panoptic Segmentation
Accurately perceiving and tracking instances over time is essential for the decision-making processes of autonomous agents interacting safely in dynamic environments. With this intention, we propose Mask4Former for the challenging task of 4D panoptic segmentation of LiDAR point clouds. Mask4Former is the first transformer-based approach unifying semantic instance segmentation and tracking of sparse and irregular sequences of 3D point clouds into a single joint model. Our model directly predicts semantic instances and their temporal associations without relying on hand-crafted non-learned association strategies such as probabilistic clustering or voting-based center prediction. Instead, Mask4Former introduces spatio-temporal instance queries that encode the semantic and geometric properties of each semantic tracklet in the sequence. In an in-depth study, we find that promoting spatially compact instance predictions is critical as spatio-temporal instance queries tend to merge multiple semantically similar instances, even if they are spatially distant. To this end, we regress 6-DOF bounding box parameters from spatio-temporal instance queries, which are used as an auxiliary task to foster spatially compact predictions. Mask4Former achieves a new state-of-the-art on the SemanticKITTI test set with a score of 68.4 LSTQ.
DFormerv2: Geometry Self-Attention for RGBD Semantic Segmentation
Recent advances in scene understanding benefit a lot from depth maps because of the 3D geometry information, especially in complex conditions (e.g., low light and overexposed). Existing approaches encode depth maps along with RGB images and perform feature fusion between them to enable more robust predictions. Taking into account that depth can be regarded as a geometry supplement for RGB images, a straightforward question arises: Do we really need to explicitly encode depth information with neural networks as done for RGB images? Based on this insight, in this paper, we investigate a new way to learn RGBD feature representations and present DFormerv2, a strong RGBD encoder that explicitly uses depth maps as geometry priors rather than encoding depth information with neural networks. Our goal is to extract the geometry clues from the depth and spatial distances among all the image patch tokens, which will then be used as geometry priors to allocate attention weights in self-attention. Extensive experiments demonstrate that DFormerv2 exhibits exceptional performance in various RGBD semantic segmentation benchmarks. Code is available at: https://github.com/VCIP-RGBD/DFormer.
GeometryCrafter: Consistent Geometry Estimation for Open-world Videos with Diffusion Priors
Despite remarkable advancements in video depth estimation, existing methods exhibit inherent limitations in achieving geometric fidelity through the affine-invariant predictions, limiting their applicability in reconstruction and other metrically grounded downstream tasks. We propose GeometryCrafter, a novel framework that recovers high-fidelity point map sequences with temporal coherence from open-world videos, enabling accurate 3D/4D reconstruction, camera parameter estimation, and other depth-based applications. At the core of our approach lies a point map Variational Autoencoder (VAE) that learns a latent space agnostic to video latent distributions for effective point map encoding and decoding. Leveraging the VAE, we train a video diffusion model to model the distribution of point map sequences conditioned on the input videos. Extensive evaluations on diverse datasets demonstrate that GeometryCrafter achieves state-of-the-art 3D accuracy, temporal consistency, and generalization capability.
The Principles of Deep Learning Theory
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
Tiny LVLM-eHub: Early Multimodal Experiments with Bard
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated significant progress in tackling complex multimodal tasks. Among these cutting-edge developments, Google's Bard stands out for its remarkable multimodal capabilities, promoting comprehensive comprehension and reasoning across various domains. This work presents an early and holistic evaluation of LVLMs' multimodal abilities, with a particular focus on Bard, by proposing a lightweight variant of LVLM-eHub, named Tiny LVLM-eHub. In comparison to the vanilla version, Tiny LVLM-eHub possesses several appealing properties. Firstly, it provides a systematic assessment of six categories of multimodal capabilities, including visual perception, visual knowledge acquisition, visual reasoning, visual commonsense, object hallucination, and embodied intelligence, through quantitative evaluation of 42 standard text-related visual benchmarks. Secondly, it conducts an in-depth analysis of LVLMs' predictions using the ChatGPT Ensemble Evaluation (CEE), which leads to a robust and accurate evaluation and exhibits improved alignment with human evaluation compared to the word matching approach. Thirdly, it comprises a mere 2.1K image-text pairs, facilitating ease of use for practitioners to evaluate their own offline LVLMs. Through extensive experimental analysis, this study demonstrates that Bard outperforms previous LVLMs in most multimodal capabilities except object hallucination, to which Bard is still susceptible. Tiny LVLM-eHub serves as a baseline evaluation for various LVLMs and encourages innovative strategies aimed at advancing multimodal techniques. Our project is publicly available at https://github.com/OpenGVLab/Multi-Modality-Arena.
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Predictive uncertainty estimation is essential for safe deployment of Deep Neural Networks in real-world autonomous systems. However, disentangling the different types and sources of uncertainty is non trivial for most datasets, especially since there is no ground truth for uncertainty. In addition, while adverse weather conditions of varying intensities can disrupt neural network predictions, they are usually under-represented in both training and test sets in public datasets.We attempt to mitigate these setbacks and introduce the MUAD dataset (Multiple Uncertainties for Autonomous Driving), consisting of 10,413 realistic synthetic images with diverse adverse weather conditions (night, fog, rain, snow), out-of-distribution objects, and annotations for semantic segmentation, depth estimation, object, and instance detection. MUAD allows to better assess the impact of different sources of uncertainty on model performance. We conduct a thorough experimental study of this impact on several baseline Deep Neural Networks across multiple tasks, and release our dataset to allow researchers to benchmark their algorithm methodically in adverse conditions. More visualizations and the download link for MUAD are available at https://muad-dataset.github.io/.
GP-GS: Gaussian Processes for Enhanced Gaussian Splatting
3D Gaussian Splatting has emerged as an efficient photorealistic novel view synthesis method. However, its reliance on sparse Structure-from-Motion (SfM) point clouds consistently compromises the scene reconstruction quality. To address these limitations, this paper proposes a novel 3D reconstruction framework Gaussian Processes Gaussian Splatting (GP-GS), where a multi-output Gaussian Process model is developed to achieve adaptive and uncertainty-guided densification of sparse SfM point clouds. Specifically, we propose a dynamic sampling and filtering pipeline that adaptively expands the SfM point clouds by leveraging GP-based predictions to infer new candidate points from the input 2D pixels and depth maps. The pipeline utilizes uncertainty estimates to guide the pruning of high-variance predictions, ensuring geometric consistency and enabling the generation of dense point clouds. The densified point clouds provide high-quality initial 3D Gaussians to enhance reconstruction performance. Extensive experiments conducted on synthetic and real-world datasets across various scales validate the effectiveness and practicality of the proposed framework.
Seeing the Future, Perceiving the Future: A Unified Driving World Model for Future Generation and Perception
We present UniFuture, a simple yet effective driving world model that seamlessly integrates future scene generation and perception within a single framework. Unlike existing models focusing solely on pixel-level future prediction or geometric reasoning, our approach jointly models future appearance (i.e., RGB image) and geometry (i.e., depth), ensuring coherent predictions. Specifically, during the training, we first introduce a Dual-Latent Sharing scheme, which transfers image and depth sequence in a shared latent space, allowing both modalities to benefit from shared feature learning. Additionally, we propose a Multi-scale Latent Interaction mechanism, which facilitates bidirectional refinement between image and depth features at multiple spatial scales, effectively enhancing geometry consistency and perceptual alignment. During testing, our UniFuture can easily predict high-consistency future image-depth pairs by only using the current image as input. Extensive experiments on the nuScenes dataset demonstrate that UniFuture outperforms specialized models on future generation and perception tasks, highlighting the advantages of a unified, structurally-aware world model. The project page is at https://github.com/dk-liang/UniFuture.
360 in the Wild: Dataset for Depth Prediction and View Synthesis
The large abundance of perspective camera datasets facilitated the emergence of novel learning-based strategies for various tasks, such as camera localization, single image depth estimation, or view synthesis. However, panoramic or omnidirectional image datasets, including essential information, such as pose and depth, are mostly made with synthetic scenes. In this work, we introduce a large scale 360^{circ} videos dataset in the wild. This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide. Hence, this dataset exhibits very diversified environments (e.g., indoor and outdoor) and contexts (e.g., with and without moving objects). Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map. We illustrate the relevance of our dataset for two main tasks, namely, single image depth estimation and view synthesis.
Depth Is All You Need for Monocular 3D Detection
A key contributor to recent progress in 3D detection from single images is monocular depth estimation. Existing methods focus on how to leverage depth explicitly, by generating pseudo-pointclouds or providing attention cues for image features. More recent works leverage depth prediction as a pretraining task and fine-tune the depth representation while training it for 3D detection. However, the adaptation is insufficient and is limited in scale by manual labels. In this work, we propose to further align depth representation with the target domain in unsupervised fashions. Our methods leverage commonly available LiDAR or RGB videos during training time to fine-tune the depth representation, which leads to improved 3D detectors. Especially when using RGB videos, we show that our two-stage training by first generating pseudo-depth labels is critical because of the inconsistency in loss distribution between the two tasks. With either type of reference data, our multi-task learning approach improves over the state of the art on both KITTI and NuScenes, while matching the test-time complexity of its single task sub-network.
D3RoMa: Disparity Diffusion-based Depth Sensing for Material-Agnostic Robotic Manipulation
Depth sensing is an important problem for 3D vision-based robotics. Yet, a real-world active stereo or ToF depth camera often produces noisy and incomplete depth which bottlenecks robot performances. In this work, we propose D3RoMa, a learning-based depth estimation framework on stereo image pairs that predicts clean and accurate depth in diverse indoor scenes, even in the most challenging scenarios with translucent or specular surfaces where classical depth sensing completely fails. Key to our method is that we unify depth estimation and restoration into an image-to-image translation problem by predicting the disparity map with a denoising diffusion probabilistic model. At inference time, we further incorporated a left-right consistency constraint as classifier guidance to the diffusion process. Our framework combines recently advanced learning-based approaches and geometric constraints from traditional stereo vision. For model training, we create a large scene-level synthetic dataset with diverse transparent and specular objects to compensate for existing tabletop datasets. The trained model can be directly applied to real-world in-the-wild scenes and achieve state-of-the-art performance in multiple public depth estimation benchmarks. Further experiments in real environments show that accurate depth prediction significantly improves robotic manipulation in various scenarios.
MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images. While recent methods pursuing 3D inference advocate learning novel-view generative models, these generations are not 3D-consistent and require a distillation process to generate a 3D output. We instead cast the task of 3D inference as directly generating mutually-consistent multiple views and build on the insight that additionally inferring depth can provide a mechanism for enforcing this consistency. Specifically, we train a denoising diffusion model to generate multi-view RGB-D images given a single RGB input image and leverage the (intermediate noisy) depth estimates to obtain reprojection-based conditioning to maintain multi-view consistency. We train our model using large-scale synthetic dataset Obajverse as well as the real-world CO3D dataset comprising of generic camera viewpoints. We demonstrate that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods. We also evaluate the geometry induced by our multi-view depth prediction and find that it yields a more accurate representation than other direct 3D inference approaches.
Estimating Image Depth in the Comics Domain
Estimating the depth of comics images is challenging as such images a) are monocular; b) lack ground-truth depth annotations; c) differ across different artistic styles; d) are sparse and noisy. We thus, use an off-the-shelf unsupervised image to image translation method to translate the comics images to natural ones and then use an attention-guided monocular depth estimator to predict their depth. This lets us leverage the depth annotations of existing natural images to train the depth estimator. Furthermore, our model learns to distinguish between text and images in the comics panels to reduce text-based artefacts in the depth estimates. Our method consistently outperforms the existing state-ofthe-art approaches across all metrics on both the DCM and eBDtheque images. Finally, we introduce a dataset to evaluate depth prediction on comics. Our project website can be accessed at https://github.com/IVRL/ComicsDepth.
Constraining Depth Map Geometry for Multi-View Stereo: A Dual-Depth Approach with Saddle-shaped Depth Cells
Learning-based multi-view stereo (MVS) methods deal with predicting accurate depth maps to achieve an accurate and complete 3D representation. Despite the excellent performance, existing methods ignore the fact that a suitable depth geometry is also critical in MVS. In this paper, we demonstrate that different depth geometries have significant performance gaps, even using the same depth prediction error. Therefore, we introduce an ideal depth geometry composed of Saddle-Shaped Cells, whose predicted depth map oscillates upward and downward around the ground-truth surface, rather than maintaining a continuous and smooth depth plane. To achieve it, we develop a coarse-to-fine framework called Dual-MVSNet (DMVSNet), which can produce an oscillating depth plane. Technically, we predict two depth values for each pixel (Dual-Depth), and propose a novel loss function and a checkerboard-shaped selecting strategy to constrain the predicted depth geometry. Compared to existing methods,DMVSNet achieves a high rank on the DTU benchmark and obtains the top performance on challenging scenes of Tanks and Temples, demonstrating its strong performance and generalization ability. Our method also points to a new research direction for considering depth geometry in MVS.
Calibrating Panoramic Depth Estimation for Practical Localization and Mapping
The absolute depth values of surrounding environments provide crucial cues for various assistive technologies, such as localization, navigation, and 3D structure estimation. We propose that accurate depth estimated from panoramic images can serve as a powerful and light-weight input for a wide range of downstream tasks requiring 3D information. While panoramic images can easily capture the surrounding context from commodity devices, the estimated depth shares the limitations of conventional image-based depth estimation; the performance deteriorates under large domain shifts and the absolute values are still ambiguous to infer from 2D observations. By taking advantage of the holistic view, we mitigate such effects in a self-supervised way and fine-tune the network with geometric consistency during the test phase. Specifically, we construct a 3D point cloud from the current depth prediction and project the point cloud at various viewpoints or apply stretches on the current input image to generate synthetic panoramas. Then we minimize the discrepancy of the 3D structure estimated from synthetic images without collecting additional data. We empirically evaluate our method in robot navigation and map-free localization where our method shows large performance enhancements. Our calibration method can therefore widen the applicability under various external conditions, serving as a key component for practical panorama-based machine vision systems.
MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation
We propose MAMo, a novel memory and attention frame-work for monocular video depth estimation. MAMo can augment and improve any single-image depth estimation networks into video depth estimation models, enabling them to take advantage of the temporal information to predict more accurate depth. In MAMo, we augment model with memory which aids the depth prediction as the model streams through the video. Specifically, the memory stores learned visual and displacement tokens of the previous time instances. This allows the depth network to cross-reference relevant features from the past when predicting depth on the current frame. We introduce a novel scheme to continuously update the memory, optimizing it to keep tokens that correspond with both the past and the present visual information. We adopt attention-based approach to process memory features where we first learn the spatio-temporal relation among the resultant visual and displacement memory tokens using self-attention module. Further, the output features of self-attention are aggregated with the current visual features through cross-attention. The cross-attended features are finally given to a decoder to predict depth on the current frame. Through extensive experiments on several benchmarks, including KITTI, NYU-Depth V2, and DDAD, we show that MAMo consistently improves monocular depth estimation networks and sets new state-of-the-art (SOTA) accuracy. Notably, our MAMo video depth estimation provides higher accuracy with lower latency, when omparing to SOTA cost-volume-based video depth models.
Correlation of Object Detection Performance with Visual Saliency and Depth Estimation
As object detection techniques continue to evolve, understanding their relationships with complementary visual tasks becomes crucial for optimising model architectures and computational resources. This paper investigates the correlations between object detection accuracy and two fundamental visual tasks: depth prediction and visual saliency prediction. Through comprehensive experiments using state-of-the-art models (DeepGaze IIE, Depth Anything, DPT-Large, and Itti's model) on COCO and Pascal VOC datasets, we find that visual saliency shows consistently stronger correlations with object detection accuracy (mArho up to 0.459 on Pascal VOC) compared to depth prediction (mArho up to 0.283). Our analysis reveals significant variations in these correlations across object categories, with larger objects showing correlation values up to three times higher than smaller objects. These findings suggest incorporating visual saliency features into object detection architectures could be more beneficial than depth information, particularly for specific object categories. The observed category-specific variations also provide insights for targeted feature engineering and dataset design improvements, potentially leading to more efficient and accurate object detection systems.
Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation
Monocular depth estimation aims to infer a dense depth map from a single image, which is a fundamental and prevalent task in computer vision. Many previous works have shown impressive depth estimation results through carefully designed network structures, but they usually ignore the planar information and therefore perform poorly in low-texture areas of indoor scenes. In this paper, we propose Plane2Depth, which adaptively utilizes plane information to improve depth prediction within a hierarchical framework. Specifically, in the proposed plane guided depth generator (PGDG), we design a set of plane queries as prototypes to softly model planes in the scene and predict per-pixel plane coefficients. Then the predicted plane coefficients can be converted into metric depth values with the pinhole camera model. In the proposed adaptive plane query aggregation (APGA) module, we introduce a novel feature interaction approach to improve the aggregation of multi-scale plane features in a top-down manner. Extensive experiments show that our method can achieve outstanding performance, especially in low-texture or repetitive areas. Furthermore, under the same backbone network, our method outperforms the state-of-the-art methods on the NYU-Depth-v2 dataset, achieves competitive results with state-of-the-art methods KITTI dataset and can be generalized to unseen scenes effectively.
MonoNav: MAV Navigation via Monocular Depth Estimation and Reconstruction
A major challenge in deploying the smallest of Micro Aerial Vehicle (MAV) platforms (< 100 g) is their inability to carry sensors that provide high-resolution metric depth information (e.g., LiDAR or stereo cameras). Current systems rely on end-to-end learning or heuristic approaches that directly map images to control inputs, and struggle to fly fast in unknown environments. In this work, we ask the following question: using only a monocular camera, optical odometry, and offboard computation, can we create metrically accurate maps to leverage the powerful path planning and navigation approaches employed by larger state-of-the-art robotic systems to achieve robust autonomy in unknown environments? We present MonoNav: a fast 3D reconstruction and navigation stack for MAVs that leverages recent advances in depth prediction neural networks to enable metrically accurate 3D scene reconstruction from a stream of monocular images and poses. MonoNav uses off-the-shelf pre-trained monocular depth estimation and fusion techniques to construct a map, then searches over motion primitives to plan a collision-free trajectory to the goal. In extensive hardware experiments, we demonstrate how MonoNav enables the Crazyflie (a 37 g MAV) to navigate fast (0.5 m/s) in cluttered indoor environments. We evaluate MonoNav against a state-of-the-art end-to-end approach, and find that the collision rate in navigation is significantly reduced (by a factor of 4). This increased safety comes at the cost of conservatism in terms of a 22% reduction in goal completion.
NDDepth: Normal-Distance Assisted Monocular Depth Estimation
Monocular depth estimation has drawn widespread attention from the vision community due to its broad applications. In this paper, we propose a novel physics (geometry)-driven deep learning framework for monocular depth estimation by assuming that 3D scenes are constituted by piece-wise planes. Particularly, we introduce a new normal-distance head that outputs pixel-level surface normal and plane-to-origin distance for deriving depth at each position. Meanwhile, the normal and distance are regularized by a developed plane-aware consistency constraint. We further integrate an additional depth head to improve the robustness of the proposed framework. To fully exploit the strengths of these two heads, we develop an effective contrastive iterative refinement module that refines depth in a complementary manner according to the depth uncertainty. Extensive experiments indicate that the proposed method exceeds previous state-of-the-art competitors on the NYU-Depth-v2, KITTI and SUN RGB-D datasets. Notably, it ranks 1st among all submissions on the KITTI depth prediction online benchmark at the submission time.
GEDepth: Ground Embedding for Monocular Depth Estimation
Monocular depth estimation is an ill-posed problem as the same 2D image can be projected from infinite 3D scenes. Although the leading algorithms in this field have reported significant improvement, they are essentially geared to the particular compound of pictorial observations and camera parameters (i.e., intrinsics and extrinsics), strongly limiting their generalizability in real-world scenarios. To cope with this challenge, this paper proposes a novel ground embedding module to decouple camera parameters from pictorial cues, thus promoting the generalization capability. Given camera parameters, the proposed module generates the ground depth, which is stacked with the input image and referenced in the final depth prediction. A ground attention is designed in the module to optimally combine ground depth with residual depth. Our ground embedding is highly flexible and lightweight, leading to a plug-in module that is amenable to be integrated into various depth estimation networks. Experiments reveal that our approach achieves the state-of-the-art results on popular benchmarks, and more importantly, renders significant generalization improvement on a wide range of cross-domain tests.
From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation
Estimating accurate depth from a single image is challenging because it is an ill-posed problem as infinitely many 3D scenes can be projected to the same 2D scene. However, recent works based on deep convolutional neural networks show great progress with plausible results. The convolutional neural networks are generally composed of two parts: an encoder for dense feature extraction and a decoder for predicting the desired depth. In the encoder-decoder schemes, repeated strided convolution and spatial pooling layers lower the spatial resolution of transitional outputs, and several techniques such as skip connections or multi-layer deconvolutional networks are adopted to recover the original resolution for effective dense prediction. In this paper, for more effective guidance of densely encoded features to the desired depth prediction, we propose a network architecture that utilizes novel local planar guidance layers located at multiple stages in the decoding phase. We show that the proposed method outperforms the state-of-the-art works with significant margin evaluating on challenging benchmarks. We also provide results from an ablation study to validate the effectiveness of the proposed method.
DepthCues: Evaluating Monocular Depth Perception in Large Vision Models
Large-scale pre-trained vision models are becoming increasingly prevalent, offering expressive and generalizable visual representations that benefit various downstream tasks. Recent studies on the emergent properties of these models have revealed their high-level geometric understanding, in particular in the context of depth perception. However, it remains unclear how depth perception arises in these models without explicit depth supervision provided during pre-training. To investigate this, we examine whether the monocular depth cues, similar to those used by the human visual system, emerge in these models. We introduce a new benchmark, DepthCues, designed to evaluate depth cue understanding, and present findings across 20 diverse and representative pre-trained vision models. Our analysis shows that human-like depth cues emerge in more recent larger models. We also explore enhancing depth perception in large vision models by fine-tuning on DepthCues, and find that even without dense depth supervision, this improves depth estimation. To support further research, our benchmark and evaluation code will be made publicly available for studying depth perception in vision models.
On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation
Recent advances in monocular depth estimation have been made by incorporating natural language as additional guidance. Although yielding impressive results, the impact of the language prior, particularly in terms of generalization and robustness, remains unexplored. In this paper, we address this gap by quantifying the impact of this prior and introduce methods to benchmark its effectiveness across various settings. We generate "low-level" sentences that convey object-centric, three-dimensional spatial relationships, incorporate them as additional language priors and evaluate their downstream impact on depth estimation. Our key finding is that current language-guided depth estimators perform optimally only with scene-level descriptions and counter-intuitively fare worse with low level descriptions. Despite leveraging additional data, these methods are not robust to directed adversarial attacks and decline in performance with an increase in distribution shift. Finally, to provide a foundation for future research, we identify points of failures and offer insights to better understand these shortcomings. With an increasing number of methods using language for depth estimation, our findings highlight the opportunities and pitfalls that require careful consideration for effective deployment in real-world settings
Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts. Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion and may not capture long-range temporal dependencies in dynamic scenes. To address this gap, we propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks, i.e., sequences of corresponding points across frames. By incorporating these motion cues, the Tracktention Layer enhances temporal alignment and effectively handles complex object motions, maintaining consistent feature representations over time. Our approach is computationally efficient and can be seamlessly integrated into existing models, such as Vision Transformers, with minimal modification. It can be used to upgrade image-only models to state-of-the-art video ones, sometimes outperforming models natively designed for video prediction. We demonstrate this on video depth prediction and video colorization, where models augmented with the Tracktention Layer exhibit significantly improved temporal consistency compared to baselines.
MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.
Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops
Objects undergo varying amounts of perspective distortion as they move across a camera's field of view. Models for predicting 3D from a single image often work with crops around the object of interest and ignore the location of the object in the camera's field of view. We note that ignoring this location information further exaggerates the inherent ambiguity in making 3D inferences from 2D images and can prevent models from even fitting to the training data. To mitigate this ambiguity, we propose Intrinsics-Aware Positional Encoding (KPE), which incorporates information about the location of crops in the image and camera intrinsics. Experiments on three popular 3D-from-a-single-image benchmarks: depth prediction on NYU, 3D object detection on KITTI & nuScenes, and predicting 3D shapes of articulated objects on ARCTIC, show the benefits of KPE.
GroundUp: Rapid Sketch-Based 3D City Massing
We propose GroundUp, the first sketch-based ideation tool for 3D city massing of urban areas. We focus on early-stage urban design, where sketching is a common tool and the design starts from balancing building volumes (masses) and open spaces. With Human-Centered AI in mind, we aim to help architects quickly revise their ideas by easily switching between 2D sketches and 3D models, allowing for smoother iteration and sharing of ideas. Inspired by feedback from architects and existing workflows, our system takes as a first input a user sketch of multiple buildings in a top-down view. The user then draws a perspective sketch of the envisioned site. Our method is designed to exploit the complementarity of information in the two sketches and allows users to quickly preview and adjust the inferred 3D shapes. Our model has two main components. First, we propose a novel sketch-to-depth prediction network for perspective sketches that exploits top-down sketch shapes. Second, we use depth cues derived from the perspective sketch as a condition to our diffusion model, which ultimately completes the geometry in a top-down view. Thus, our final 3D geometry is represented as a heightfield, allowing users to construct the city `from the ground up'.
R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras
Dense 3D reconstruction and ego-motion estimation are key challenges in autonomous driving and robotics. Compared to the complex, multi-modal systems deployed today, multi-camera systems provide a simpler, low-cost alternative. However, camera-based 3D reconstruction of complex dynamic scenes has proven extremely difficult, as existing solutions often produce incomplete or incoherent results. We propose R3D3, a multi-camera system for dense 3D reconstruction and ego-motion estimation. Our approach iterates between geometric estimation that exploits spatial-temporal information from multiple cameras, and monocular depth refinement. We integrate multi-camera feature correlation and dense bundle adjustment operators that yield robust geometric depth and pose estimates. To improve reconstruction where geometric depth is unreliable, e.g. for moving objects or low-textured regions, we introduce learnable scene priors via a depth refinement network. We show that this design enables a dense, consistent 3D reconstruction of challenging, dynamic outdoor environments. Consequently, we achieve state-of-the-art dense depth prediction on the DDAD and NuScenes benchmarks.
WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space
Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.
GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods.
FeatUp: A Model-Agnostic Framework for Features at Any Resolution
Deep features are a cornerstone of computer vision research, capturing image semantics and enabling the community to solve downstream tasks even in the zero- or few-shot regime. However, these features often lack the spatial resolution to directly perform dense prediction tasks like segmentation and depth prediction because models aggressively pool information over large areas. In this work, we introduce FeatUp, a task- and model-agnostic framework to restore lost spatial information in deep features. We introduce two variants of FeatUp: one that guides features with high-resolution signal in a single forward pass, and one that fits an implicit model to a single image to reconstruct features at any resolution. Both approaches use a multi-view consistency loss with deep analogies to NeRFs. Our features retain their original semantics and can be swapped into existing applications to yield resolution and performance gains even without re-training. We show that FeatUp significantly outperforms other feature upsampling and image super-resolution approaches in class activation map generation, transfer learning for segmentation and depth prediction, and end-to-end training for semantic segmentation.
Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image-based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample target blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transformers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
ConsistNet: Enforcing 3D Consistency for Multi-view Images Diffusion
Given a single image of a 3D object, this paper proposes a novel method (named ConsistNet) that is able to generate multiple images of the same object, as if seen they are captured from different viewpoints, while the 3D (multi-view) consistencies among those multiple generated images are effectively exploited. Central to our method is a multi-view consistency block which enables information exchange across multiple single-view diffusion processes based on the underlying multi-view geometry principles. ConsistNet is an extension to the standard latent diffusion model, and consists of two sub-modules: (a) a view aggregation module that unprojects multi-view features into global 3D volumes and infer consistency, and (b) a ray aggregation module that samples and aggregate 3D consistent features back to each view to enforce consistency. Our approach departs from previous methods in multi-view image generation, in that it can be easily dropped-in pre-trained LDMs without requiring explicit pixel correspondences or depth prediction. Experiments show that our method effectively learns 3D consistency over a frozen Zero123 backbone and can generate 16 surrounding views of the object within 40 seconds on a single A100 GPU. Our code will be made available on https://github.com/JiayuYANG/ConsistNet
Matrix3D: Large Photogrammetry Model All-in-One
We present Matrix3D, a unified model that performs several photogrammetry subtasks, including pose estimation, depth prediction, and novel view synthesis using just the same model. Matrix3D utilizes a multi-modal diffusion transformer (DiT) to integrate transformations across several modalities, such as images, camera parameters, and depth maps. The key to Matrix3D's large-scale multi-modal training lies in the incorporation of a mask learning strategy. This enables full-modality model training even with partially complete data, such as bi-modality data of image-pose and image-depth pairs, thus significantly increases the pool of available training data. Matrix3D demonstrates state-of-the-art performance in pose estimation and novel view synthesis tasks. Additionally, it offers fine-grained control through multi-round interactions, making it an innovative tool for 3D content creation. Project page: https://nju-3dv.github.io/projects/matrix3d.
Splatter a Video: Video Gaussian Representation for Versatile Processing
Video representation is a long-standing problem that is crucial for various down-stream tasks, such as tracking,depth prediction,segmentation,view synthesis,and editing. However, current methods either struggle to model complex motions due to the absence of 3D structure or rely on implicit 3D representations that are ill-suited for manipulation tasks. To address these challenges, we introduce a novel explicit 3D representation-video Gaussian representation -- that embeds a video into 3D Gaussians. Our proposed representation models video appearance in a 3D canonical space using explicit Gaussians as proxies and associates each Gaussian with 3D motions for video motion. This approach offers a more intrinsic and explicit representation than layered atlas or volumetric pixel matrices. To obtain such a representation, we distill 2D priors, such as optical flow and depth, from foundation models to regularize learning in this ill-posed setting. Extensive applications demonstrate the versatility of our new video representation. It has been proven effective in numerous video processing tasks, including tracking, consistent video depth and feature refinement, motion and appearance editing, and stereoscopic video generation. Project page: https://sunyangtian.github.io/spatter_a_video_web/
JointNet: Extending Text-to-Image Diffusion for Dense Distribution Modeling
We introduce JointNet, a novel neural network architecture for modeling the joint distribution of images and an additional dense modality (e.g., depth maps). JointNet is extended from a pre-trained text-to-image diffusion model, where a copy of the original network is created for the new dense modality branch and is densely connected with the RGB branch. The RGB branch is locked during network fine-tuning, which enables efficient learning of the new modality distribution while maintaining the strong generalization ability of the large-scale pre-trained diffusion model. We demonstrate the effectiveness of JointNet by using RGBD diffusion as an example and through extensive experiments, showcasing its applicability in a variety of applications, including joint RGBD generation, dense depth prediction, depth-conditioned image generation, and coherent tile-based 3D panorama generation.
CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion
Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.
Map-free Visual Relocalization: Metric Pose Relative to a Single Image
Can we relocalize in a scene represented by a single reference image? Standard visual relocalization requires hundreds of images and scale calibration to build a scene-specific 3D map. In contrast, we propose Map-free Relocalization, i.e., using only one photo of a scene to enable instant, metric scaled relocalization. Existing datasets are not suitable to benchmark map-free relocalization, due to their focus on large scenes or their limited variability. Thus, we have constructed a new dataset of 655 small places of interest, such as sculptures, murals and fountains, collected worldwide. Each place comes with a reference image to serve as a relocalization anchor, and dozens of query images with known, metric camera poses. The dataset features changing conditions, stark viewpoint changes, high variability across places, and queries with low to no visual overlap with the reference image. We identify two viable families of existing methods to provide baseline results: relative pose regression, and feature matching combined with single-image depth prediction. While these methods show reasonable performance on some favorable scenes in our dataset, map-free relocalization proves to be a challenge that requires new, innovative solutions.
Multi-task Self-Supervised Visual Learning
We investigate methods for combining multiple self-supervised tasks--i.e., supervised tasks where data can be collected without manual labeling--in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks--even via a naive multi-head architecture--always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.
CAD2RL: Real Single-Image Flight without a Single Real Image
Deep reinforcement learning has emerged as a promising and powerful technique for automatically acquiring control policies that can process raw sensory inputs, such as images, and perform complex behaviors. However, extending deep RL to real-world robotic tasks has proven challenging, particularly in safety-critical domains such as autonomous flight, where a trial-and-error learning process is often impractical. In this paper, we explore the following question: can we train vision-based navigation policies entirely in simulation, and then transfer them into the real world to achieve real-world flight without a single real training image? We propose a learning method that we call CAD^2RL, which can be used to perform collision-free indoor flight in the real world while being trained entirely on 3D CAD models. Our method uses single RGB images from a monocular camera, without needing to explicitly reconstruct the 3D geometry of the environment or perform explicit motion planning. Our learned collision avoidance policy is represented by a deep convolutional neural network that directly processes raw monocular images and outputs velocity commands. This policy is trained entirely on simulated images, with a Monte Carlo policy evaluation algorithm that directly optimizes the network's ability to produce collision-free flight. By highly randomizing the rendering settings for our simulated training set, we show that we can train a policy that generalizes to the real world, without requiring the simulator to be particularly realistic or high-fidelity. We evaluate our method by flying a real quadrotor through indoor environments, and further evaluate the design choices in our simulator through a series of ablation studies on depth prediction. For supplementary video see: https://youtu.be/nXBWmzFrj5s
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
Self-supervised monocular depth estimation networks are trained to predict scene depth using nearby frames as a supervision signal during training. However, for many applications, sequence information in the form of video frames is also available at test time. The vast majority of monocular networks do not make use of this extra signal, thus ignoring valuable information that could be used to improve the predicted depth. Those that do, either use computationally expensive test-time refinement techniques or off-the-shelf recurrent networks, which only indirectly make use of the geometric information that is inherently available. We propose ManyDepth, an adaptive approach to dense depth estimation that can make use of sequence information at test time, when it is available. Taking inspiration from multi-view stereo, we propose a deep end-to-end cost volume based approach that is trained using self-supervision only. We present a novel consistency loss that encourages the network to ignore the cost volume when it is deemed unreliable, e.g. in the case of moving objects, and an augmentation scheme to cope with static cameras. Our detailed experiments on both KITTI and Cityscapes show that we outperform all published self-supervised baselines, including those that use single or multiple frames at test time.
FutureDepth: Learning to Predict the Future Improves Video Depth Estimation
In this paper, we propose a novel video depth estimation approach, FutureDepth, which enables the model to implicitly leverage multi-frame and motion cues to improve depth estimation by making it learn to predict the future at training. More specifically, we propose a future prediction network, F-Net, which takes the features of multiple consecutive frames and is trained to predict multi-frame features one time step ahead iteratively. In this way, F-Net learns the underlying motion and correspondence information, and we incorporate its features into the depth decoding process. Additionally, to enrich the learning of multiframe correspondence cues, we further leverage a reconstruction network, R-Net, which is trained via adaptively masked auto-encoding of multiframe feature volumes. At inference time, both F-Net and R-Net are used to produce queries to work with the depth decoder, as well as a final refinement network. Through extensive experiments on several benchmarks, i.e., NYUDv2, KITTI, DDAD, and Sintel, which cover indoor, driving, and open-domain scenarios, we show that FutureDepth significantly improves upon baseline models, outperforms existing video depth estimation methods, and sets new state-of-the-art (SOTA) accuracy. Furthermore, FutureDepth is more efficient than existing SOTA video depth estimation models and has similar latencies when comparing to monocular models
Learning Invariant World State Representations with Predictive Coding
Self-supervised learning methods overcome the key bottleneck for building more capable AI: limited availability of labeled data. However, one of the drawbacks of self-supervised architectures is that the representations that they learn are implicit and it is hard to extract meaningful information about the encoded world states, such as 3D structure of the visual scene encoded in a depth map. Moreover, in the visual domain such representations only rarely undergo evaluations that may be critical for downstream tasks, such as vision for autonomous cars. Herein, we propose a framework for evaluating visual representations for illumination invariance in the context of depth perception. We develop a new predictive coding-based architecture and a hybrid fully-supervised/self-supervised learning method. We propose a novel architecture that extends the predictive coding approach: PRedictive Lateral bottom-Up and top-Down Encoder-decoder Network (PreludeNet), which explicitly learns to infer and predict depth from video frames. In PreludeNet, the encoder's stack of predictive coding layers is trained in a self-supervised manner, while the predictive decoder is trained in a supervised manner to infer or predict the depth. We evaluate the robustness of our model on a new synthetic dataset, in which lighting conditions (such as overall illumination, and effect of shadows) can be be parametrically adjusted while keeping all other aspects of the world constant. PreludeNet achieves both competitive depth inference performance and next frame prediction accuracy. We also show how this new network architecture, coupled with the hybrid fully-supervised/self-supervised learning method, achieves balance between the said performance and invariance to changes in lighting. The proposed framework for evaluating visual representations can be extended to diverse task domains and invariance tests.
One scalar is all you need -- absolute depth estimation using monocular self-supervision
Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets.
Scalable Autoregressive Monocular Depth Estimation
This paper shows that the autoregressive model is an effective and scalable monocular depth estimator. Our idea is simple: We tackle the monocular depth estimation (MDE) task with an autoregressive prediction paradigm, based on two core designs. First, our depth autoregressive model (DAR) treats the depth map of different resolutions as a set of tokens, and conducts the low-to-high resolution autoregressive objective with a patch-wise casual mask. Second, our DAR recursively discretizes the entire depth range into more compact intervals, and attains the coarse-to-fine granularity autoregressive objective in an ordinal-regression manner. By coupling these two autoregressive objectives, our DAR establishes new state-of-the-art (SOTA) on KITTI and NYU Depth v2 by clear margins. Further, our scalable approach allows us to scale the model up to 2.0B and achieve the best RMSE of 1.799 on the KITTI dataset (5% improvement) compared to 1.896 by the current SOTA (Depth Anything). DAR further showcases zero-shot generalization ability on unseen datasets. These results suggest that DAR yields superior performance with an autoregressive prediction paradigm, providing a promising approach to equip modern autoregressive large models (e.g., GPT-4o) with depth estimation capabilities.
Width and Depth Limits Commute in Residual Networks
We show that taking the width and depth to infinity in a deep neural network with skip connections, when branches are scaled by 1/depth (the only nontrivial scaling), result in the same covariance structure no matter how that limit is taken. This explains why the standard infinite-width-then-depth approach provides practical insights even for networks with depth of the same order as width. We also demonstrate that the pre-activations, in this case, have Gaussian distributions which has direct applications in Bayesian deep learning. We conduct extensive simulations that show an excellent match with our theoretical findings.
Learning Temporally Consistent Video Depth from Video Diffusion Priors
This work addresses the challenge of video depth estimation, which expects not only per-frame accuracy but, more importantly, cross-frame consistency. Instead of directly developing a depth estimator from scratch, we reformulate the prediction task into a conditional generation problem. This allows us to leverage the prior knowledge embedded in existing video generation models, thereby reducing learn- ing difficulty and enhancing generalizability. Concretely, we study how to tame the public Stable Video Diffusion (SVD) to predict reliable depth from input videos using a mixture of image depth and video depth datasets. We empirically confirm that a procedural training strategy - first optimizing the spatial layers of SVD and then optimizing the temporal layers while keeping the spatial layers frozen - yields the best results in terms of both spatial accuracy and temporal consistency. We further examine the sliding window strategy for inference on arbitrarily long videos. Our observations indicate a trade-off between efficiency and performance, with a one-frame overlap already producing favorable results. Extensive experimental results demonstrate the superiority of our approach, termed ChronoDepth, over existing alternatives, particularly in terms of the temporal consistency of the estimated depth. Additionally, we highlight the benefits of more consistent video depth in two practical applications: depth-conditioned video generation and novel view synthesis. Our project page is available at https://jhaoshao.github.io/ChronoDepth/{this http URL}.
Robust Monocular Depth Estimation under Challenging Conditions
While state-of-the-art monocular depth estimation approaches achieve impressive results in ideal settings, they are highly unreliable under challenging illumination and weather conditions, such as at nighttime or in the presence of rain. In this paper, we uncover these safety-critical issues and tackle them with md4all: a simple and effective solution that works reliably under both adverse and ideal conditions, as well as for different types of learning supervision. We achieve this by exploiting the efficacy of existing methods under perfect settings. Therefore, we provide valid training signals independently of what is in the input. First, we generate a set of complex samples corresponding to the normal training ones. Then, we train the model by guiding its self- or full-supervision by feeding the generated samples and computing the standard losses on the corresponding original images. Doing so enables a single model to recover information across diverse conditions without modifications at inference time. Extensive experiments on two challenging public datasets, namely nuScenes and Oxford RobotCar, demonstrate the effectiveness of our techniques, outperforming prior works by a large margin in both standard and challenging conditions. Source code and data are available at: https://md4all.github.io.
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
This work presents Depth Anything, a highly practical solution for robust monocular depth estimation. Without pursuing novel technical modules, we aim to build a simple yet powerful foundation model dealing with any images under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data (~62M), which significantly enlarges the data coverage and thus is able to reduce the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a more challenging optimization target is created by leveraging data augmentation tools. It compels the model to actively seek extra visual knowledge and acquire robust representations. Second, an auxiliary supervision is developed to enforce the model to inherit rich semantic priors from pre-trained encoders. We evaluate its zero-shot capabilities extensively, including six public datasets and randomly captured photos. It demonstrates impressive generalization ability. Further, through fine-tuning it with metric depth information from NYUv2 and KITTI, new SOTAs are set. Our better depth model also results in a better depth-conditioned ControlNet. Our models are released at https://github.com/LiheYoung/Depth-Anything.
Two-in-One Depth: Bridging the Gap Between Monocular and Binocular Self-supervised Depth Estimation
Monocular and binocular self-supervised depth estimations are two important and related tasks in computer vision, which aim to predict scene depths from single images and stereo image pairs respectively. In literature, the two tasks are usually tackled separately by two different kinds of models, and binocular models generally fail to predict depth from single images, while the prediction accuracy of monocular models is generally inferior to binocular models. In this paper, we propose a Two-in-One self-supervised depth estimation network, called TiO-Depth, which could not only compatibly handle the two tasks, but also improve the prediction accuracy. TiO-Depth employs a Siamese architecture and each sub-network of it could be used as a monocular depth estimation model. For binocular depth estimation, a Monocular Feature Matching module is proposed for incorporating the stereo knowledge between the two images, and the full TiO-Depth is used to predict depths. We also design a multi-stage joint-training strategy for improving the performances of TiO-Depth in both two tasks by combining the relative advantages of them. Experimental results on the KITTI, Cityscapes, and DDAD datasets demonstrate that TiO-Depth outperforms both the monocular and binocular state-of-the-art methods in most cases, and further verify the feasibility of a two-in-one network for monocular and binocular depth estimation. The code is available at https://github.com/ZM-Zhou/TiO-Depth_pytorch.
CLIMAT: Clinically-Inspired Multi-Agent Transformers for Knee Osteoarthritis Trajectory Forecasting
In medical applications, deep learning methods are built to automate diagnostic tasks. However, a clinically relevant question that practitioners usually face, is how to predict the future trajectory of a disease (prognosis). Current methods for such a problem often require domain knowledge, and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many forecasting problem from multimodal data. Inspired by a clinical decision-making process with two agents -- a radiologist and a general practitioner, we model a prognosis prediction problem with two transformer-based components that share information between each other. The first block in this model aims to analyze the imaging data, and the second block leverages the internal representations of the first one as inputs, also fusing them with auxiliary patient data. We show the effectiveness of our method in predicting the development of structural knee osteoarthritis changes over time. Our results show that the proposed method outperforms the state-of-the-art baselines in terms of various performance metrics. In addition, we empirically show that the existence of the multi-agent transformers with depths of 2 is sufficient to achieve good performances. Our code is publicly available at https://github.com/MIPT-Oulu/CLIMAT.
Learning Depth Estimation for Transparent and Mirror Surfaces
Inferring the depth of transparent or mirror (ToM) surfaces represents a hard challenge for either sensors, algorithms, or deep networks. We propose a simple pipeline for learning to estimate depth properly for such surfaces with neural networks, without requiring any ground-truth annotation. We unveil how to obtain reliable pseudo labels by in-painting ToM objects in images and processing them with a monocular depth estimation model. These labels can be used to fine-tune existing monocular or stereo networks, to let them learn how to deal with ToM surfaces. Experimental results on the Booster dataset show the dramatic improvements enabled by our remarkably simple proposal.
3D ShapeNets: A Deep Representation for Volumetric Shapes
3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representations automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet -- a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection
Monocular 3D object detection has long been a challenging task in autonomous driving. Most existing methods follow conventional 2D detectors to first localize object centers, and then predict 3D attributes by neighboring features. However, only using local visual features is insufficient to understand the scene-level 3D spatial structures and ignores the long-range inter-object depth relations. In this paper, we introduce the first DETR framework for Monocular DEtection with a depth-guided TRansformer, named MonoDETR. We modify the vanilla transformer to be depth-aware and guide the whole detection process by contextual depth cues. Specifically, concurrent to the visual encoder that captures object appearances, we introduce to predict a foreground depth map, and specialize a depth encoder to extract non-local depth embeddings. Then, we formulate 3D object candidates as learnable queries and propose a depth-guided decoder to conduct object-scene depth interactions. In this way, each object query estimates its 3D attributes adaptively from the depth-guided regions on the image and is no longer constrained to local visual features. On KITTI benchmark with monocular images as input, MonoDETR achieves state-of-the-art performance and requires no extra dense depth annotations. Besides, our depth-guided modules can also be plug-and-play to enhance multi-view 3D object detectors on nuScenes dataset, demonstrating our superior generalization capacity. Code is available at https://github.com/ZrrSkywalker/MonoDETR.
Multi-Object Discovery by Low-Dimensional Object Motion
Recent work in unsupervised multi-object segmentation shows impressive results by predicting motion from a single image despite the inherent ambiguity in predicting motion without the next image. On the other hand, the set of possible motions for an image can be constrained to a low-dimensional space by considering the scene structure and moving objects in it. We propose to model pixel-wise geometry and object motion to remove ambiguity in reconstructing flow from a single image. Specifically, we divide the image into coherently moving regions and use depth to construct flow bases that best explain the observed flow in each region. We achieve state-of-the-art results in unsupervised multi-object segmentation on synthetic and real-world datasets by modeling the scene structure and object motion. Our evaluation of the predicted depth maps shows reliable performance in monocular depth estimation.
Depth Attention for Robust RGB Tracking
RGB video object tracking is a fundamental task in computer vision. Its effectiveness can be improved using depth information, particularly for handling motion-blurred target. However, depth information is often missing in commonly used tracking benchmarks. In this work, we propose a new framework that leverages monocular depth estimation to counter the challenges of tracking targets that are out of view or affected by motion blur in RGB video sequences. Specifically, our work introduces following contributions. To the best of our knowledge, we are the first to propose a depth attention mechanism and to formulate a simple framework that allows seamlessly integration of depth information with state of the art tracking algorithms, without RGB-D cameras, elevating accuracy and robustness. We provide extensive experiments on six challenging tracking benchmarks. Our results demonstrate that our approach provides consistent gains over several strong baselines and achieves new SOTA performance. We believe that our method will open up new possibilities for more sophisticated VOT solutions in real-world scenarios. Our code and models are publicly released: https://github.com/LiuYuML/Depth-Attention.
PolyMaX: General Dense Prediction with Mask Transformer
Dense prediction tasks, such as semantic segmentation, depth estimation, and surface normal prediction, can be easily formulated as per-pixel classification (discrete outputs) or regression (continuous outputs). This per-pixel prediction paradigm has remained popular due to the prevalence of fully convolutional networks. However, on the recent frontier of segmentation task, the community has been witnessing a shift of paradigm from per-pixel prediction to cluster-prediction with the emergence of transformer architectures, particularly the mask transformers, which directly predicts a label for a mask instead of a pixel. Despite this shift, methods based on the per-pixel prediction paradigm still dominate the benchmarks on the other dense prediction tasks that require continuous outputs, such as depth estimation and surface normal prediction. Motivated by the success of DORN and AdaBins in depth estimation, achieved by discretizing the continuous output space, we propose to generalize the cluster-prediction based method to general dense prediction tasks. This allows us to unify dense prediction tasks with the mask transformer framework. Remarkably, the resulting model PolyMaX demonstrates state-of-the-art performance on three benchmarks of NYUD-v2 dataset. We hope our simple yet effective design can inspire more research on exploiting mask transformers for more dense prediction tasks. Code and model will be made available.
The Third Monocular Depth Estimation Challenge
This paper discusses the results of the third edition of the Monocular Depth Estimation Challenge (MDEC). The challenge focuses on zero-shot generalization to the challenging SYNS-Patches dataset, featuring complex scenes in natural and indoor settings. As with the previous edition, methods can use any form of supervision, i.e. supervised or self-supervised. The challenge received a total of 19 submissions outperforming the baseline on the test set: 10 among them submitted a report describing their approach, highlighting a diffused use of foundational models such as Depth Anything at the core of their method. The challenge winners drastically improved 3D F-Score performance, from 17.51% to 23.72%.
MultiDepth: Multi-Sample Priors for Refining Monocular Metric Depth Estimations in Indoor Scenes
Monocular metric depth estimation (MMDE) is a crucial task to solve for indoor scene reconstruction on edge devices. Despite this importance, existing models are sensitive to factors such as boundary frequency of objects in the scene and scene complexity, failing to fully capture many indoor scenes. In this work, we propose to close this gap through the task of monocular metric depth refinement (MMDR) by leveraging state-of-the-art MMDE models. MultiDepth proposes a solution by taking samples of the image along with the initial depth map prediction made by a pre-trained MMDE model. Compared to existing iterative depth refinement techniques, MultiDepth does not employ normal map prediction as part of its architecture, effectively lowering the model size and computation overhead while outputting impactful changes from refining iterations. MultiDepth implements a lightweight encoder-decoder architecture for the refinement network, processing multiple samples from the given image, including segmentation masking. We evaluate MultiDepth on four datasets and compare them to state-of-the-art methods to demonstrate its effective refinement with minimal overhead, displaying accuracy improvement upward of 45%.
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manu- ally labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth predic- tion, without requiring a pre-training stage or annotated ground truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photomet- ric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset (without any further augmentation) gives com- parable performance to that of the state of art supervised methods for single view depth estimation.
DepthFM: Fast Monocular Depth Estimation with Flow Matching
Monocular depth estimation is crucial for numerous downstream vision tasks and applications. Current discriminative approaches to this problem are limited due to blurry artifacts, while state-of-the-art generative methods suffer from slow sampling due to their SDE nature. Rather than starting from noise, we seek a direct mapping from input image to depth map. We observe that this can be effectively framed using flow matching, since its straight trajectories through solution space offer efficiency and high quality. Our study demonstrates that a pre-trained image diffusion model can serve as an adequate prior for a flow matching depth model, allowing efficient training on only synthetic data to generalize to real images. We find that an auxiliary surface normals loss further improves the depth estimates. Due to the generative nature of our approach, our model reliably predicts the confidence of its depth estimates. On standard benchmarks of complex natural scenes, our lightweight approach exhibits state-of-the-art performance at favorable low computational cost despite only being trained on little synthetic data.
Background Prompting for Improved Object Depth
Estimating the depth of objects from a single image is a valuable task for many vision, robotics, and graphics applications. However, current methods often fail to produce accurate depth for objects in diverse scenes. In this work, we propose a simple yet effective Background Prompting strategy that adapts the input object image with a learned background. We learn the background prompts only using small-scale synthetic object datasets. To infer object depth on a real image, we place the segmented object into the learned background prompt and run off-the-shelf depth networks. Background Prompting helps the depth networks focus on the foreground object, as they are made invariant to background variations. Moreover, Background Prompting minimizes the domain gap between synthetic and real object images, leading to better sim2real generalization than simple finetuning. Results on multiple synthetic and real datasets demonstrate consistent improvements in real object depths for a variety of existing depth networks. Code and optimized background prompts can be found at: https://mbaradad.github.io/depth_prompt.
Maximal Initial Learning Rates in Deep ReLU Networks
Training a neural network requires choosing a suitable learning rate, which involves a trade-off between speed and effectiveness of convergence. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate eta^{ast} - the largest learning rate at which a randomly initialized neural network can successfully begin training and achieve (at least) a given threshold accuracy. Using a simple approach to estimate eta^{ast}, we observe that in constant-width fully-connected ReLU networks, eta^{ast} behaves differently from the maximum learning rate later in training. Specifically, we find that eta^{ast} is well predicted as a power of depth times width, provided that (i) the width of the network is sufficiently large compared to the depth, and (ii) the input layer is trained at a relatively small learning rate. We further analyze the relationship between eta^{ast} and the sharpness lambda_{1} of the network at initialization, indicating they are closely though not inversely related. We formally prove bounds for lambda_{1} in terms of depth times width that align with our empirical results.
Convex Decomposition of Indoor Scenes
We describe a method to parse a complex, cluttered indoor scene into primitives which offer a parsimonious abstraction of scene structure. Our primitives are simple convexes. Our method uses a learned regression procedure to parse a scene into a fixed number of convexes from RGBD input, and can optionally accept segmentations to improve the decomposition. The result is then polished with a descent method which adjusts the convexes to produce a very good fit, and greedily removes superfluous primitives. Because the entire scene is parsed, we can evaluate using traditional depth, normal, and segmentation error metrics. Our evaluation procedure demonstrates that the error from our primitive representation is comparable to that of predicting depth from a single image.
AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning
Machine learning requires data, but acquiring and labeling real-world data is challenging, expensive, and time-consuming. More importantly, it is nearly impossible to alter real data post-acquisition (e.g., change the illumination of a room), making it very difficult to measure how specific properties of the data affect performance. In this paper, we present AI Playground (AIP), an open-source, Unreal Engine-based tool for generating and labeling virtual image data. With AIP, it is trivial to capture the same image under different conditions (e.g., fidelity, lighting, etc.) and with different ground truths (e.g., depth or surface normal values). AIP is easily extendable and can be used with or without code. To validate our proposed tool, we generated eight datasets of otherwise identical but varying lighting and fidelity conditions. We then trained deep neural networks to predict (1) depth values, (2) surface normals, or (3) object labels and assessed each network's intra- and cross-dataset performance. Among other insights, we verified that sensitivity to different settings is problem-dependent. We confirmed the findings of other studies that segmentation models are very sensitive to fidelity, but we also found that they are just as sensitive to lighting. In contrast, depth and normal estimation models seem to be less sensitive to fidelity or lighting and more sensitive to the structure of the image. Finally, we tested our trained depth-estimation networks on two real-world datasets and obtained results comparable to training on real data alone, confirming that our virtual environments are realistic enough for real-world tasks.
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth
Depth estimation from a single image is an important task that can be applied to various fields in computer vision, and has grown rapidly with the development of convolutional neural networks. In this paper, we propose a novel structure and training strategy for monocular depth estimation to further improve the prediction accuracy of the network. We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder to generate an estimated depth map while considering local connectivity. By constructing connected paths between multi-scale local features and the global decoding stream with our proposed selective feature fusion module, the network can integrate both representations and recover fine details. In addition, the proposed decoder shows better performance than the previously proposed decoders, with considerably less computational complexity. Furthermore, we improve the depth-specific augmentation method by utilizing an important observation in depth estimation to enhance the model. Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2. Extensive experiments have been conducted to validate and show the effectiveness of the proposed approach. Finally, our model shows better generalisation ability and robustness than other comparative models.
Grokking of Hierarchical Structure in Vanilla Transformers
For humans, language production and comprehension is sensitive to the hierarchical structure of sentences. In natural language processing, past work has questioned how effectively neural sequence models like transformers capture this hierarchical structure when generalizing to structurally novel inputs. We show that transformer language models can learn to generalize hierarchically after training for extremely long periods -- far beyond the point when in-domain accuracy has saturated. We call this phenomenon structural grokking. On multiple datasets, structural grokking exhibits inverted U-shaped scaling in model depth: intermediate-depth models generalize better than both very deep and very shallow transformers. When analyzing the relationship between model-internal properties and grokking, we find that optimal depth for grokking can be identified using the tree-structuredness metric of murty2023projections. Overall, our work provides strong evidence that, with extended training, vanilla transformers discover and use hierarchical structure.
Self-Supervised Monocular Depth Estimation by Direction-aware Cumulative Convolution Network
Monocular depth estimation is known as an ill-posed task in which objects in a 2D image usually do not contain sufficient information to predict their depth. Thus, it acts differently from other tasks (e.g., classification and segmentation) in many ways. In this paper, we find that self-supervised monocular depth estimation shows a direction sensitivity and environmental dependency in the feature representation. But the current backbones borrowed from other tasks pay less attention to handling different types of environmental information, limiting the overall depth accuracy. To bridge this gap, we propose a new Direction-aware Cumulative Convolution Network (DaCCN), which improves the depth feature representation in two aspects. First, we propose a direction-aware module, which can learn to adjust the feature extraction in each direction, facilitating the encoding of different types of information. Secondly, we design a new cumulative convolution to improve the efficiency for aggregating important environmental information. Experiments show that our method achieves significant improvements on three widely used benchmarks, KITTI, Cityscapes, and Make3D, setting a new state-of-the-art performance on the popular benchmarks with all three types of self-supervision.
LiDAR-based 4D Occupancy Completion and Forecasting
Scene completion and forecasting are two popular perception problems in research for mobile agents like autonomous vehicles. Existing approaches treat the two problems in isolation, resulting in a separate perception of the two aspects. In this paper, we introduce a novel LiDAR perception task of Occupancy Completion and Forecasting (OCF) in the context of autonomous driving to unify these aspects into a cohesive framework. This task requires new algorithms to address three challenges altogether: (1) sparse-to-dense reconstruction, (2) partial-to-complete hallucination, and (3) 3D-to-4D prediction. To enable supervision and evaluation, we curate a large-scale dataset termed OCFBench from public autonomous driving datasets. We analyze the performance of closely related existing baseline models and our own ones on our dataset. We envision that this research will inspire and call for further investigation in this evolving and crucial area of 4D perception. Our code for data curation and baseline implementation is available at https://github.com/ai4ce/Occ4cast.
Detail Preserving Depth Estimation from a Single Image Using Attention Guided Networks
Convolutional Neural Networks have demonstrated superior performance on single image depth estimation in recent years. These works usually use stacked spatial pooling or strided convolution to get high-level information which are common practices in classification task. However, depth estimation is a dense prediction problem and low-resolution feature maps usually generate blurred depth map which is undesirable in application. In order to produce high quality depth map, say clean and accurate, we propose a network consists of a Dense Feature Extractor (DFE) and a Depth Map Generator (DMG). The DFE combines ResNet and dilated convolutions. It extracts multi-scale information from input image while keeping the feature maps dense. As for DMG, we use attention mechanism to fuse multi-scale features produced in DFE. Our Network is trained end-to-end and does not need any post-processing. Hence, it runs fast and can predict depth map in about 15 fps. Experiment results show that our method is competitive with the state-of-the-art in quantitative evaluation, but can preserve better structural details of the scene depth.
Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think
Recent work showed that large diffusion models can be reused as highly precise monocular depth estimators by casting depth estimation as an image-conditional image generation task. While the proposed model achieved state-of-the-art results, high computational demands due to multi-step inference limited its use in many scenarios. In this paper, we show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed. The fixed model performs comparably to the best previously reported configuration while being more than 200times faster. To optimize for downstream task performance, we perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models on common zero-shot benchmarks. We surprisingly find that this fine-tuning protocol also works directly on Stable Diffusion and achieves comparable performance to current state-of-the-art diffusion-based depth and normal estimation models, calling into question some of the conclusions drawn from prior works.
Monocular Depth Decomposition of Semi-Transparent Volume Renderings
Neural networks have shown great success in extracting geometric information from color images. Especially, monocular depth estimation networks are increasingly reliable in real-world scenes. In this work we investigate the applicability of such monocular depth estimation networks to semi-transparent volume rendered images. As depth is notoriously difficult to define in a volumetric scene without clearly defined surfaces, we consider different depth computations that have emerged in practice, and compare state-of-the-art monocular depth estimation approaches for these different interpretations during an evaluation considering different degrees of opacity in the renderings. Additionally, we investigate how these networks can be extended to further obtain color and opacity information, in order to create a layered representation of the scene based on a single color image. This layered representation consists of spatially separated semi-transparent intervals that composite to the original input rendering. In our experiments we show that existing approaches to monocular depth estimation can be adapted to perform well on semi-transparent volume renderings, which has several applications in the area of scientific visualization, like re-composition with additional objects and labels or additional shading.
GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes, e.g., depth and normals, from single images. While significant research has already been conducted in this area, the progress has been substantially limited by the low diversity and poor quality of publicly available datasets. As a result, the prior works either are constrained to limited scenarios or suffer from the inability to capture geometric details. In this paper, we demonstrate that generative models, as opposed to traditional discriminative models (e.g., CNNs and Transformers), can effectively address the inherently ill-posed problem. We further show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage. Specifically, we extend the original stable diffusion model to jointly predict depth and normal, allowing mutual information exchange and high consistency between the two representations. More importantly, we propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions. This strategy enables our model to recognize different scene layouts, capturing 3D geometry with remarkable fidelity. GeoWizard sets new benchmarks for zero-shot depth and normal prediction, significantly enhancing many downstream applications such as 3D reconstruction, 2D content creation, and novel viewpoint synthesis.
Unified Recurrence Modeling for Video Action Anticipation
Forecasting future events based on evidence of current conditions is an innate skill of human beings, and key for predicting the outcome of any decision making. In artificial vision for example, we would like to predict the next human action before it happens, without observing the future video frames associated to it. Computer vision models for action anticipation are expected to collect the subtle evidence in the preamble of the target actions. In prior studies recurrence modeling often leads to better performance, the strong temporal inference is assumed to be a key element for reasonable prediction. To this end, we propose a unified recurrence modeling for video action anticipation via message passing framework. The information flow in space-time can be described by the interaction between vertices and edges, and the changes of vertices for each incoming frame reflects the underlying dynamics. Our model leverages self-attention as the building blocks for each of the message passing functions. In addition, we introduce different edge learning strategies that can be end-to-end optimized to gain better flexibility for the connectivity between vertices. Our experimental results demonstrate that our proposed method outperforms previous works on the large-scale EPIC-Kitchen dataset.
IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo
We present IterMVS, a new data-driven method for high-resolution multi-view stereo. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. To extract the depth maps, we combine traditional classification and regression in a novel manner. We verify the efficiency and effectiveness of our method on DTU, Tanks&Temples and ETH3D. While being the most efficient method in both memory and run-time, our model achieves competitive performance on DTU and better generalization ability on Tanks&Temples as well as ETH3D than most state-of-the-art methods. Code is available at https://github.com/FangjinhuaWang/IterMVS.
ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth
This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains. The code and pre-trained models are publicly available at https://github.com/isl-org/ZoeDepth .
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
We focus on solving the univariate times series point forecasting problem using deep learning. We propose a deep neural architecture based on backward and forward residual links and a very deep stack of fully-connected layers. The architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array of target domains, and fast to train. We test the proposed architecture on several well-known datasets, including M3, M4 and TOURISM competition datasets containing time series from diverse domains. We demonstrate state-of-the-art performance for two configurations of N-BEATS for all the datasets, improving forecast accuracy by 11% over a statistical benchmark and by 3% over last year's winner of the M4 competition, a domain-adjusted hand-crafted hybrid between neural network and statistical time series models. The first configuration of our model does not employ any time-series-specific components and its performance on heterogeneous datasets strongly suggests that, contrarily to received wisdom, deep learning primitives such as residual blocks are by themselves sufficient to solve a wide range of forecasting problems. Finally, we demonstrate how the proposed architecture can be augmented to provide outputs that are interpretable without considerable loss in accuracy.
DGOcc: Depth-aware Global Query-based Network for Monocular 3D Occupancy Prediction
Monocular 3D occupancy prediction, aiming to predict the occupancy and semantics within interesting regions of 3D scenes from only 2D images, has garnered increasing attention recently for its vital role in 3D scene understanding. Predicting the 3D occupancy of large-scale outdoor scenes from 2D images is ill-posed and resource-intensive. In this paper, we present DGOcc, a Depth-aware Global query-based network for monocular 3D Occupancy prediction. We first explore prior depth maps to extract depth context features that provide explicit geometric information for the occupancy network. Then, in order to fully exploit the depth context features, we propose a Global Query-based (GQ) Module. The cooperation of attention mechanisms and scale-aware operations facilitates the feature interaction between images and 3D voxels. Moreover, a Hierarchical Supervision Strategy (HSS) is designed to avoid upsampling the high-dimension 3D voxel features to full resolution, which mitigates GPU memory utilization and time cost. Extensive experiments on SemanticKITTI and SSCBench-KITTI-360 datasets demonstrate that the proposed method achieves the best performance on monocular semantic occupancy prediction while reducing GPU and time overhead.
SteeredMarigold: Steering Diffusion Towards Depth Completion of Largely Incomplete Depth Maps
Even if the depth maps captured by RGB-D sensors deployed in real environments are often characterized by large areas missing valid depth measurements, the vast majority of depth completion methods still assumes depth values covering all areas of the scene. To address this limitation, we introduce SteeredMarigold, a training-free, zero-shot depth completion method capable of producing metric dense depth, even for largely incomplete depth maps. SteeredMarigold achieves this by using the available sparse depth points as conditions to steer a denoising diffusion probabilistic model. Our method outperforms relevant top-performing methods on the NYUv2 dataset, in tests where no depth was provided for a large area, achieving state-of-art performance and exhibiting remarkable robustness against depth map incompleteness. Our code will be publicly available.
Intuitive physics understanding emerges from self-supervised pretraining on natural videos
We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regions in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
Source-free Depth for Object Pop-out
Depth cues are known to be useful for visual perception. However, direct measurement of depth is often impracticable. Fortunately, though, modern learning-based methods offer promising depth maps by inference in the wild. In this work, we adapt such depth inference models for object segmentation using the objects' "pop-out" prior in 3D. The "pop-out" is a simple composition prior that assumes objects reside on the background surface. Such compositional prior allows us to reason about objects in the 3D space. More specifically, we adapt the inferred depth maps such that objects can be localized using only 3D information. Such separation, however, requires knowledge about contact surface which we learn using the weak supervision of the segmentation mask. Our intermediate representation of contact surface, and thereby reasoning about objects purely in 3D, allows us to better transfer the depth knowledge into semantics. The proposed adaptation method uses only the depth model without needing the source data used for training, making the learning process efficient and practical. Our experiments on eight datasets of two challenging tasks, namely camouflaged object detection and salient object detection, consistently demonstrate the benefit of our method in terms of both performance and generalizability.
ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation
Estimating depth from a single image is a challenging visual task. Compared to relative depth estimation, metric depth estimation attracts more attention due to its practical physical significance and critical applications in real-life scenarios. However, existing metric depth estimation methods are typically trained on specific datasets with similar scenes, facing challenges in generalizing across scenes with significant scale variations. To address this challenge, we propose a novel monocular depth estimation method called ScaleDepth. Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction (SASP) module and an adaptive relative depth estimation (ARDE) module, respectively. The proposed ScaleDepth enjoys several merits. First, the SASP module can implicitly combine structural and semantic features of the images to predict precise scene scales. Second, the ARDE module can adaptively estimate the relative depth distribution of each image within a normalized depth space. Third, our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework, without the need for setting the depth range or fine-tuning model. Extensive experiments demonstrate that our method attains state-of-the-art performance across indoor, outdoor, unconstrained, and unseen scenes. Project page: https://ruijiezhu94.github.io/ScaleDepth
EarthPT: a time series foundation model for Earth Observation
We introduce EarthPT -- an Earth Observation (EO) pretrained transformer. EarthPT is a 700 million parameter decoding transformer foundation model trained in an autoregressive self-supervised manner and developed specifically with EO use-cases in mind. We demonstrate that EarthPT is an effective forecaster that can accurately predict future pixel-level surface reflectances across the 400-2300 nm range well into the future. For example, forecasts of the evolution of the Normalised Difference Vegetation Index (NDVI) have a typical error of approximately 0.05 (over a natural range of -1 -> 1) at the pixel level over a five month test set horizon, out-performing simple phase-folded models based on historical averaging. We also demonstrate that embeddings learnt by EarthPT hold semantically meaningful information and could be exploited for downstream tasks such as highly granular, dynamic land use classification. Excitingly, we note that the abundance of EO data provides us with -- in theory -- quadrillions of training tokens. Therefore, if we assume that EarthPT follows neural scaling laws akin to those derived for Large Language Models (LLMs), there is currently no data-imposed limit to scaling EarthPT and other similar `Large Observation Models.'
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and biases have emerged. We develop tools that enable mixing multiple datasets during training, even if their annotations are incompatible. In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of principled multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on auxiliary tasks. Armed with these tools, we experiment with five diverse training datasets, including a new, massive data source: 3D films. To demonstrate the generalization power of our approach we use zero-shot cross-dataset transfer}, i.e. we evaluate on datasets that were not seen during training. The experiments confirm that mixing data from complementary sources greatly improves monocular depth estimation. Our approach clearly outperforms competing methods across diverse datasets, setting a new state of the art for monocular depth estimation. Some results are shown in the supplementary video at https://youtu.be/D46FzVyL9I8
Dyna-DM: Dynamic Object-aware Self-supervised Monocular Depth Maps
Self-supervised monocular depth estimation has been a subject of intense study in recent years, because of its applications in robotics and autonomous driving. Much of the recent work focuses on improving depth estimation by increasing architecture complexity. This paper shows that state-of-the-art performance can also be achieved by improving the learning process rather than increasing model complexity. More specifically, we propose (i) disregarding small potentially dynamic objects when training, and (ii) employing an appearance-based approach to separately estimate object pose for truly dynamic objects. We demonstrate that these simplifications reduce GPU memory usage by 29% and result in qualitatively and quantitatively improved depth maps. The code is available at https://github.com/kieran514/Dyna-DM.
MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection
In the field of monocular 3D detection, it is common practice to utilize scene geometric clues to enhance the detector's performance. However, many existing works adopt these clues explicitly such as estimating a depth map and back-projecting it into 3D space. This explicit methodology induces sparsity in 3D representations due to the increased dimensionality from 2D to 3D, and leads to substantial information loss, especially for distant and occluded objects. To alleviate this issue, we propose MonoNeRD, a novel detection framework that can infer dense 3D geometry and occupancy. Specifically, we model scenes with Signed Distance Functions (SDF), facilitating the production of dense 3D representations. We treat these representations as Neural Radiance Fields (NeRF) and then employ volume rendering to recover RGB images and depth maps. To the best of our knowledge, this work is the first to introduce volume rendering for M3D, and demonstrates the potential of implicit reconstruction for image-based 3D perception. Extensive experiments conducted on the KITTI-3D benchmark and Waymo Open Dataset demonstrate the effectiveness of MonoNeRD. Codes are available at https://github.com/cskkxjk/MonoNeRD.
PredBench: Benchmarking Spatio-Temporal Prediction across Diverse Disciplines
In this paper, we introduce PredBench, a benchmark tailored for the holistic evaluation of spatio-temporal prediction networks. Despite significant progress in this field, there remains a lack of a standardized framework for a detailed and comparative analysis of various prediction network architectures. PredBench addresses this gap by conducting large-scale experiments, upholding standardized and appropriate experimental settings, and implementing multi-dimensional evaluations. This benchmark integrates 12 widely adopted methods with 15 diverse datasets across multiple application domains, offering extensive evaluation of contemporary spatio-temporal prediction networks. Through meticulous calibration of prediction settings across various applications, PredBench ensures evaluations relevant to their intended use and enables fair comparisons. Moreover, its multi-dimensional evaluation framework broadens the analysis with a comprehensive set of metrics, providing deep insights into the capabilities of models. The findings from our research offer strategic directions for future developments in the field. Our codebase is available at https://github.com/OpenEarthLab/PredBench.
FineRecon: Depth-aware Feed-forward Network for Detailed 3D Reconstruction
Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry without test-time optimization is feasible using deep neural networks, showing remarkable promise and high efficiency. However, the reconstructed geometry, typically represented as a 3D truncated signed distance function (TSDF), is often coarse without fine geometric details. To address this problem, we propose three effective solutions for improving the fidelity of inference-based 3D reconstructions. We first present a resolution-agnostic TSDF supervision strategy to provide the network with a more accurate learning signal during training, avoiding the pitfalls of TSDF interpolation seen in previous work. We then introduce a depth guidance strategy using multi-view depth estimates to enhance the scene representation and recover more accurate surfaces. Finally, we develop a novel architecture for the final layers of the network, conditioning the output TSDF prediction on high-resolution image features in addition to coarse voxel features, enabling sharper reconstruction of fine details. Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Source code is released at https://github.com/yanzq95/DHD.
3DPPE: 3D Point Positional Encoding for Multi-Camera 3D Object Detection Transformers
Transformer-based methods have swept the benchmarks on 2D and 3D detection on images. Because tokenization before the attention mechanism drops the spatial information, positional encoding becomes critical for those methods. Recent works found that encodings based on samples of the 3D viewing rays can significantly improve the quality of multi-camera 3D object detection. We hypothesize that 3D point locations can provide more information than rays. Therefore, we introduce 3D point positional encoding, 3DPPE, to the 3D detection Transformer decoder. Although 3D measurements are not available at the inference time of monocular 3D object detection, 3DPPE uses predicted depth to approximate the real point positions. Our hybriddepth module combines direct and categorical depth to estimate the refined depth of each pixel. Despite the approximation, 3DPPE achieves 46.0 mAP and 51.4 NDS on the competitive nuScenes dataset, significantly outperforming encodings based on ray samples. We make the codes available at https://github.com/drilistbox/3DPPE.
WorldSimBench: Towards Video Generation Models as World Simulators
Recent advancements in predictive models have demonstrated exceptional capabilities in predicting the future state of objects and scenes. However, the lack of categorization based on inherent characteristics continues to hinder the progress of predictive model development. Additionally, existing benchmarks are unable to effectively evaluate higher-capability, highly embodied predictive models from an embodied perspective. In this work, we classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench. WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks, covering three representative embodied scenarios: Open-Ended Embodied Environment, Autonomous, Driving, and Robot Manipulation. In the Explicit Perceptual Evaluation, we introduce the HF-Embodied Dataset, a video assessment dataset based on fine-grained human feedback, which we use to train a Human Preference Evaluator that aligns with human perception and explicitly assesses the visual fidelity of World Simulators. In the Implicit Manipulative Evaluation, we assess the video-action consistency of World Simulators by evaluating whether the generated situation-aware video can be accurately translated into the correct control signals in dynamic environments. Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
DELTA: Dense Efficient Long-range 3D Tracking for any video
Tracking dense 3D motion from monocular videos remains challenging, particularly when aiming for pixel-level precision over long sequences. We introduce \Approach, a novel method that efficiently tracks every pixel in 3D space, enabling accurate motion estimation across entire videos. Our approach leverages a joint global-local attention mechanism for reduced-resolution tracking, followed by a transformer-based upsampler to achieve high-resolution predictions. Unlike existing methods, which are limited by computational inefficiency or sparse tracking, \Approach delivers dense 3D tracking at scale, running over 8x faster than previous methods while achieving state-of-the-art accuracy. Furthermore, we explore the impact of depth representation on tracking performance and identify log-depth as the optimal choice. Extensive experiments demonstrate the superiority of \Approach on multiple benchmarks, achieving new state-of-the-art results in both 2D and 3D dense tracking tasks. Our method provides a robust solution for applications requiring fine-grained, long-term motion tracking in 3D space.
Depth-supervised NeRF: Fewer Views and Faster Training for Free
A commonly observed failure mode of Neural Radiance Field (NeRF) is fitting incorrect geometries when given an insufficient number of input views. One potential reason is that standard volumetric rendering does not enforce the constraint that most of a scene's geometry consist of empty space and opaque surfaces. We formalize the above assumption through DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning radiance fields that takes advantage of readily-available depth supervision. We leverage the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as "free" depth supervision during training: we add a loss to encourage the distribution of a ray's terminating depth matches a given 3D keypoint, incorporating depth uncertainty. DS-NeRF can render better images given fewer training views while training 2-3x faster. Further, we show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal. And finally, we find that DS-NeRF can support other types of depth supervision such as scanned depth sensors and RGB-D reconstruction outputs.
ChildPlay: A New Benchmark for Understanding Children's Gaze Behaviour
Gaze behaviors such as eye-contact or shared attention are important markers for diagnosing developmental disorders in children. While previous studies have looked at some of these elements, the analysis is usually performed on private datasets and is restricted to lab settings. Furthermore, all publicly available gaze target prediction benchmarks mostly contain instances of adults, which makes models trained on them less applicable to scenarios with young children. In this paper, we propose the first study for predicting the gaze target of children and interacting adults. To this end, we introduce the ChildPlay dataset: a curated collection of short video clips featuring children playing and interacting with adults in uncontrolled environments (e.g. kindergarten, therapy centers, preschools etc.), which we annotate with rich gaze information. We further propose a new model for gaze target prediction that is geometrically grounded by explicitly identifying the scene parts in the 3D field of view (3DFoV) of the person, leveraging recent geometry preserving depth inference methods. Our model achieves state of the art results on benchmark datasets and ChildPlay. Furthermore, results show that looking at faces prediction performance on children is much worse than on adults, and can be significantly improved by fine-tuning models using child gaze annotations. Our dataset and models will be made publicly available.
DiffusionDepth: Diffusion Denoising Approach for Monocular Depth Estimation
Monocular depth estimation is a challenging task that predicts the pixel-wise depth from a single 2D image. Current methods typically model this problem as a regression or classification task. We propose DiffusionDepth, a new approach that reformulates monocular depth estimation as a denoising diffusion process. It learns an iterative denoising process to `denoise' random depth distribution into a depth map with the guidance of monocular visual conditions. The process is performed in the latent space encoded by a dedicated depth encoder and decoder. Instead of diffusing ground truth (GT) depth, the model learns to reverse the process of diffusing the refined depth of itself into random depth distribution. This self-diffusion formulation overcomes the difficulty of applying generative models to sparse GT depth scenarios. The proposed approach benefits this task by refining depth estimation step by step, which is superior for generating accurate and highly detailed depth maps. Experimental results on KITTI and NYU-Depth-V2 datasets suggest that a simple yet efficient diffusion approach could reach state-of-the-art performance in both indoor and outdoor scenarios with acceptable inference time.
Improving 2D Feature Representations by 3D-Aware Fine-Tuning
Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.
Words in Motion: Representation Engineering for Motion Forecasting
Motion forecasting transforms sequences of past movements and environment context into future motion. Recent methods rely on learned representations, resulting in hidden states that are difficult to interpret. In this work, we use natural language to quantize motion features in a human-interpretable way, and measure the degree to which they are embedded in hidden states. Our experiments reveal that hidden states of motion sequences are arranged with respect to our discrete sets of motion features. Following these insights, we fit control vectors to motion features, which allow for controlling motion forecasts at inference. Consequently, our method enables controlling transformer-based motion forecasting models with textual inputs, providing a unique interface to interact with and understand these models. Our implementation is available at https://github.com/kit-mrt/future-motion
DepthLab: From Partial to Complete
Missing values remain a common challenge for depth data across its wide range of applications, stemming from various causes like incomplete data acquisition and perspective alteration. This work bridges this gap with DepthLab, a foundation depth inpainting model powered by image diffusion priors. Our model features two notable strengths: (1) it demonstrates resilience to depth-deficient regions, providing reliable completion for both continuous areas and isolated points, and (2) it faithfully preserves scale consistency with the conditioned known depth when filling in missing values. Drawing on these advantages, our approach proves its worth in various downstream tasks, including 3D scene inpainting, text-to-3D scene generation, sparse-view reconstruction with DUST3R, and LiDAR depth completion, exceeding current solutions in both numerical performance and visual quality. Our project page with source code is available at https://johanan528.github.io/depthlab_web/.
OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection
Accurate depth information is crucial for enhancing the performance of multi-view 3D object detection. Despite the success of some existing multi-view 3D detectors utilizing pixel-wise depth supervision, they overlook two significant phenomena: 1) the depth supervision obtained from LiDAR points is usually distributed on the surface of the object, which is not so friendly to existing DETR-based 3D detectors due to the lack of the depth of 3D object center; 2) for distant objects, fine-grained depth estimation of the whole object is more challenging. Therefore, we argue that the object-wise depth (or 3D center of the object) is essential for accurate detection. In this paper, we propose a new multi-view 3D object detector named OPEN, whose main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding. Specifically, we first employ an object-wise depth encoder, which takes the pixel-wise depth map as a prior, to accurately estimate the object-wise depth. Then, we utilize the proposed object-wise position embedding to encode the object-wise depth information into the transformer decoder, thereby producing 3D object-aware features for final detection. Extensive experiments verify the effectiveness of our proposed method. Furthermore, OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
IEBins: Iterative Elastic Bins for Monocular Depth Estimation
Monocular depth estimation (MDE) is a fundamental topic of geometric computer vision and a core technique for many downstream applications. Recently, several methods reframe the MDE as a classification-regression problem where a linear combination of probabilistic distribution and bin centers is used to predict depth. In this paper, we propose a novel concept of iterative elastic bins (IEBins) for the classification-regression-based MDE. The proposed IEBins aims to search for high-quality depth by progressively optimizing the search range, which involves multiple stages and each stage performs a finer-grained depth search in the target bin on top of its previous stage. To alleviate the possible error accumulation during the iterative process, we utilize a novel elastic target bin to replace the original target bin, the width of which is adjusted elastically based on the depth uncertainty. Furthermore, we develop a dedicated framework composed of a feature extractor and an iterative optimizer that has powerful temporal context modeling capabilities benefiting from the GRU-based architecture. Extensive experiments on the KITTI, NYU-Depth-v2 and SUN RGB-D datasets demonstrate that the proposed method surpasses prior state-of-the-art competitors. The source code is publicly available at https://github.com/ShuweiShao/IEBins.
Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion
Depth completion upgrades sparse depth measurements into dense depth maps guided by a conventional image. Existing methods for this highly ill-posed task operate in tightly constrained settings and tend to struggle when applied to images outside the training domain or when the available depth measurements are sparse, irregularly distributed, or of varying density. Inspired by recent advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation guided by sparse measurements. Our method, Marigold-DC, builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance via an optimization scheme that runs in tandem with the iterative inference of denoising diffusion. The method exhibits excellent zero-shot generalization across a diverse range of environments and handles even extremely sparse guidance effectively. Our results suggest that contemporary monocular depth priors greatly robustify depth completion: it may be better to view the task as recovering dense depth from (dense) image pixels, guided by sparse depth; rather than as inpainting (sparse) depth, guided by an image. Project website: https://MarigoldDepthCompletion.github.io/
Recurrent Environment Simulators
Models that can simulate how environments change in response to actions can be used by agents to plan and act efficiently. We improve on previous environment simulators from high-dimensional pixel observations by introducing recurrent neural networks that are able to make temporally and spatially coherent predictions for hundreds of time-steps into the future. We present an in-depth analysis of the factors affecting performance, providing the most extensive attempt to advance the understanding of the properties of these models. We address the issue of computationally inefficiency with a model that does not need to generate a high-dimensional image at each time-step. We show that our approach can be used to improve exploration and is adaptable to many diverse environments, namely 10 Atari games, a 3D car racing environment, and complex 3D mazes.
DINO-Foresight: Looking into the Future with DINO
Predicting future dynamics is crucial for applications like autonomous driving and robotics, where understanding the environment is key. Existing pixel-level methods are computationally expensive and often focus on irrelevant details. To address these challenges, we introduce DINO-Foresight, a novel framework that operates in the semantic feature space of pretrained Vision Foundation Models (VFMs). Our approach trains a masked feature transformer in a self-supervised manner to predict the evolution of VFM features over time. By forecasting these features, we can apply off-the-shelf, task-specific heads for various scene understanding tasks. In this framework, VFM features are treated as a latent space, to which different heads attach to perform specific tasks for future-frame analysis. Extensive experiments show that our framework outperforms existing methods, demonstrating its robustness and scalability. Additionally, we highlight how intermediate transformer representations in DINO-Foresight improve downstream task performance, offering a promising path for the self-supervised enhancement of VFM features. We provide the implementation code at https://github.com/Sta8is/DINO-Foresight .
Spatially Guiding Unsupervised Semantic Segmentation Through Depth-Informed Feature Distillation and Sampling
Traditionally, training neural networks to perform semantic segmentation required expensive human-made annotations. But more recently, advances in the field of unsupervised learning have made significant progress on this issue and towards closing the gap to supervised algorithms. To achieve this, semantic knowledge is distilled by learning to correlate randomly sampled features from images across an entire dataset. In this work, we build upon these advances by incorporating information about the structure of the scene into the training process through the use of depth information. We achieve this by (1) learning depth-feature correlation by spatially correlate the feature maps with the depth maps to induce knowledge about the structure of the scene and (2) implementing farthest-point sampling to more effectively select relevant features by utilizing 3D sampling techniques on depth information of the scene. Finally, we demonstrate the effectiveness of our technical contributions through extensive experimentation and present significant improvements in performance across multiple benchmark datasets.
Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images
In this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit the training views when only a small number of images are available. To address this issue, we introduce a dense depth map as a geometry guide to mitigate overfitting. We obtained the depth map using a pre-trained monocular depth estimation model and aligning the scale and offset using sparse COLMAP feature points. The adjusted depth aids in the color-based optimization of 3D Gaussian splatting, mitigating floating artifacts, and ensuring adherence to geometric constraints. We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images. Our approach demonstrates robust geometry compared to the original method that relies solely on images. Project page: robot0321.github.io/DepthRegGS
Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks
By classifying infinite-width neural networks and identifying the *optimal* limit, Tensor Programs IV and V demonstrated a universal way, called muP, for *widthwise hyperparameter transfer*, i.e., predicting optimal hyperparameters of wide neural networks from narrow ones. Here we investigate the analogous classification for *depthwise parametrizations* of deep residual networks (resnets). We classify depthwise parametrizations of block multiplier and learning rate by their infinite-width-then-depth limits. In resnets where each block has only one layer, we identify a unique optimal parametrization, called Depth-muP that extends muP and show empirically it admits depthwise hyperparameter transfer. We identify *feature diversity* as a crucial factor in deep networks, and Depth-muP can be characterized as maximizing both feature learning and feature diversity. Exploiting this, we find that absolute value, among all homogeneous nonlinearities, maximizes feature diversity and indeed empirically leads to significantly better performance. However, if each block is deeper (such as modern transformers), then we find fundamental limitations in all possible infinite-depth limits of such parametrizations, which we illustrate both theoretically and empirically on simple networks as well as Megatron transformer trained on Common Crawl.
DepthSplat: Connecting Gaussian Splatting and Depth
Gaussian splatting and single/multi-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale unlabelled datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks. Our code, models, and video results are available at https://haofeixu.github.io/depthsplat/.
OptiGrasp: Optimized Grasp Pose Detection Using RGB Images for Warehouse Picking Robots
In warehouse environments, robots require robust picking capabilities to manage a wide variety of objects. Effective deployment demands minimal hardware, strong generalization to new products, and resilience in diverse settings. Current methods often rely on depth sensors for structural information, which suffer from high costs, complex setups, and technical limitations. Inspired by recent advancements in computer vision, we propose an innovative approach that leverages foundation models to enhance suction grasping using only RGB images. Trained solely on a synthetic dataset, our method generalizes its grasp prediction capabilities to real-world robots and a diverse range of novel objects not included in the training set. Our network achieves an 82.3\% success rate in real-world applications. The project website with code and data will be available at http://optigrasp.github.io.
MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision
We introduce a method that simultaneously learns to explore new large environments and to reconstruct them in 3D from color images only. This is closely related to the Next Best View problem (NBV), where one has to identify where to move the camera next to improve the coverage of an unknown scene. However, most of the current NBV methods rely on depth sensors, need 3D supervision and/or do not scale to large scenes. Our method requires only a color camera and no 3D supervision. It simultaneously learns in a self-supervised fashion to predict a "volume occupancy field" from color images and, from this field, to predict the NBV. Thanks to this approach, our method performs well on new scenes as it is not biased towards any training 3D data. We demonstrate this on a recent dataset made of various 3D scenes and show it performs even better than recent methods requiring a depth sensor, which is not a realistic assumption for outdoor scenes captured with a flying drone.
Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes
Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.
SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis
Neural Radiance Field (NeRF) significantly degrades when only a limited number of views are available. To complement the lack of 3D information, depth-based models, such as DSNeRF and MonoSDF, explicitly assume the availability of accurate depth maps of multiple views. They linearly scale the accurate depth maps as supervision to guide the predicted depth of few-shot NeRFs. However, accurate depth maps are difficult and expensive to capture due to wide-range depth distances in the wild. In this work, we present a new Sparse-view NeRF (SparseNeRF) framework that exploits depth priors from real-world inaccurate observations. The inaccurate depth observations are either from pre-trained depth models or coarse depth maps of consumer-level depth sensors. Since coarse depth maps are not strictly scaled to the ground-truth depth maps, we propose a simple yet effective constraint, a local depth ranking method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that of the coarse depth maps in local patches. To preserve the spatial continuity of the estimated depth of NeRF, we further propose a spatial continuity constraint to encourage the consistency of the expected depth continuity of NeRF with coarse depth maps. Surprisingly, with simple depth ranking constraints, SparseNeRF outperforms all state-of-the-art few-shot NeRF methods (including depth-based models) on standard LLFF and DTU datasets. Moreover, we collect a new dataset NVS-RGBD that contains real-world depth maps from Azure Kinect, ZED 2, and iPhone 13 Pro. Extensive experiments on NVS-RGBD dataset also validate the superiority and generalizability of SparseNeRF. Code and dataset are available at https://sparsenerf.github.io/.
Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning
The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.
Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.
D4D: An RGBD diffusion model to boost monocular depth estimation
Ground-truth RGBD data are fundamental for a wide range of computer vision applications; however, those labeled samples are difficult to collect and time-consuming to produce. A common solution to overcome this lack of data is to employ graphic engines to produce synthetic proxies; however, those data do not often reflect real-world images, resulting in poor performance of the trained models at the inference step. In this paper we propose a novel training pipeline that incorporates Diffusion4D (D4D), a customized 4-channels diffusion model able to generate realistic RGBD samples. We show the effectiveness of the developed solution in improving the performances of deep learning models on the monocular depth estimation task, where the correspondence between RGB and depth map is crucial to achieving accurate measurements. Our supervised training pipeline, enriched by the generated samples, outperforms synthetic and original data performances achieving an RMSE reduction of (8.2%, 11.9%) and (8.1%, 6.1%) respectively on the indoor NYU Depth v2 and the outdoor KITTI dataset.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
What learning algorithm is in-context learning? Investigations with linear models
Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples (x, f(x)) presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.
DDP: Diffusion Model for Dense Visual Prediction
We propose a simple, efficient, yet powerful framework for dense visual predictions based on the conditional diffusion pipeline. Our approach follows a "noise-to-map" generative paradigm for prediction by progressively removing noise from a random Gaussian distribution, guided by the image. The method, called DDP, efficiently extends the denoising diffusion process into the modern perception pipeline. Without task-specific design and architecture customization, DDP is easy to generalize to most dense prediction tasks, e.g., semantic segmentation and depth estimation. In addition, DDP shows attractive properties such as dynamic inference and uncertainty awareness, in contrast to previous single-step discriminative methods. We show top results on three representative tasks with six diverse benchmarks, without tricks, DDP achieves state-of-the-art or competitive performance on each task compared to the specialist counterparts. For example, semantic segmentation (83.9 mIoU on Cityscapes), BEV map segmentation (70.6 mIoU on nuScenes), and depth estimation (0.05 REL on KITTI). We hope that our approach will serve as a solid baseline and facilitate future research
OMNI-DC: Highly Robust Depth Completion with Multiresolution Depth Integration
Depth completion (DC) aims to predict a dense depth map from an RGB image and sparse depth observations. Existing methods for DC generalize poorly on new datasets or unseen sparse depth patterns, limiting their practical applications. We propose OMNI-DC, a highly robust DC model that generalizes well across various scenarios. Our method incorporates a novel multi-resolution depth integration layer and a probability-based loss, enabling it to deal with sparse depth maps of varying densities. Moreover, we train OMNI-DC on a mixture of synthetic datasets with a scale normalization technique. To evaluate our model, we establish a new evaluation protocol named Robust-DC for zero-shot testing under various sparse depth patterns. Experimental results on Robust-DC and conventional benchmarks show that OMNI-DC significantly outperforms the previous state of the art. The checkpoints, training code, and evaluations are available at https://github.com/princeton-vl/OMNI-DC.
Topological structure of complex predictions
Complex prediction models such as deep learning are the output from fitting machine learning, neural networks, or AI models to a set of training data. These are now standard tools in science. A key challenge with the current generation of models is that they are highly parameterized, which makes describing and interpreting the prediction strategies difficult. We use topological data analysis to transform these complex prediction models into pictures representing a topological view. The result is a map of the predictions that enables inspection. The methods scale up to large datasets across different domains and enable us to detect labeling errors in training data, understand generalization in image classification, and inspect predictions of likely pathogenic mutations in the BRCA1 gene.
OPD: Single-view 3D Openable Part Detection
We address the task of predicting what parts of an object can open and how they move when they do so. The input is a single image of an object, and as output we detect what parts of the object can open, and the motion parameters describing the articulation of each openable part. To tackle this task, we create two datasets of 3D objects: OPDSynth based on existing synthetic objects, and OPDReal based on RGBD reconstructions of real objects. We then design OPDRCNN, a neural architecture that detects openable parts and predicts their motion parameters. Our experiments show that this is a challenging task especially when considering generalization across object categories, and the limited amount of information in a single image. Our architecture outperforms baselines and prior work especially for RGB image inputs. Short video summary at https://www.youtube.com/watch?v=P85iCaD0rfc
Perception Tokens Enhance Visual Reasoning in Multimodal Language Models
Multimodal language models (MLMs) still face challenges in fundamental visual perception tasks where specialized models excel. Tasks requiring reasoning about 3D structures benefit from depth estimation, and reasoning about 2D object instances benefits from object detection. Yet, MLMs can not produce intermediate depth or boxes to reason over. Finetuning MLMs on relevant data doesn't generalize well and outsourcing computation to specialized vision tools is too compute-intensive and memory-inefficient. To address this, we introduce Perception Tokens, intrinsic image representations designed to assist reasoning tasks where language is insufficient. Perception tokens act as auxiliary reasoning tokens, akin to chain-of-thought prompts in language models. For example, in a depth-related task, an MLM augmented with perception tokens can reason by generating a depth map as tokens, enabling it to solve the problem effectively. We propose AURORA, a training method that augments MLMs with perception tokens for improved reasoning over visual inputs. AURORA leverages a VQVAE to transform intermediate image representations, such as depth maps into a tokenized format and bounding box tokens, which is then used in a multi-task training framework. AURORA achieves notable improvements across counting benchmarks: +10.8% on BLINK, +11.3% on CVBench, and +8.3% on SEED-Bench, outperforming finetuning approaches in generalization across datasets. It also improves on relative depth: over +6% on BLINK. With perception tokens, AURORA expands the scope of MLMs beyond language-based reasoning, paving the way for more effective visual reasoning capabilities.
Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation
Accurately estimating depth in 360-degree imagery is crucial for virtual reality, autonomous navigation, and immersive media applications. Existing depth estimation methods designed for perspective-view imagery fail when applied to 360-degree images due to different camera projections and distortions, whereas 360-degree methods perform inferior due to the lack of labeled data pairs. We propose a new depth estimation framework that utilizes unlabeled 360-degree data effectively. Our approach uses state-of-the-art perspective depth estimation models as teacher models to generate pseudo labels through a six-face cube projection technique, enabling efficient labeling of depth in 360-degree images. This method leverages the increasing availability of large datasets. Our approach includes two main stages: offline mask generation for invalid regions and an online semi-supervised joint training regime. We tested our approach on benchmark datasets such as Matterport3D and Stanford2D3D, showing significant improvements in depth estimation accuracy, particularly in zero-shot scenarios. Our proposed training pipeline can enhance any 360 monocular depth estimator and demonstrates effective knowledge transfer across different camera projections and data types. See our project page for results: https://albert100121.github.io/Depth-Anywhere/
MonoDINO-DETR: Depth-Enhanced Monocular 3D Object Detection Using a Vision Foundation Model
This paper proposes novel methods to enhance the performance of monocular 3D object detection models by leveraging the generalized feature extraction capabilities of a vision foundation model. Unlike traditional CNN-based approaches, which often suffer from inaccurate depth estimation and rely on multi-stage object detection pipelines, this study employs a Vision Transformer (ViT)-based foundation model as the backbone, which excels at capturing global features for depth estimation. It integrates a detection transformer (DETR) architecture to improve both depth estimation and object detection performance in a one-stage manner. Specifically, a hierarchical feature fusion block is introduced to extract richer visual features from the foundation model, further enhancing feature extraction capabilities. Depth estimation accuracy is further improved by incorporating a relative depth estimation model trained on large-scale data and fine-tuning it through transfer learning. Additionally, the use of queries in the transformer's decoder, which consider reference points and the dimensions of 2D bounding boxes, enhances recognition performance. The proposed model outperforms recent state-of-the-art methods, as demonstrated through quantitative and qualitative evaluations on the KITTI 3D benchmark and a custom dataset collected from high-elevation racing environments. Code is available at https://github.com/JihyeokKim/MonoDINO-DETR.
Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling
Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
Neural Ordinary Differential Equations
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
VEDIT: Latent Prediction Architecture For Procedural Video Representation Learning
Procedural video representation learning is an active research area where the objective is to learn an agent which can anticipate and forecast the future given the present video input, typically in conjunction with textual annotations. Prior works often rely on large-scale pretraining of visual encoders and prediction models with language supervision. However, the necessity and effectiveness of extending compute intensive pretraining to learn video clip sequences with noisy text supervision have not yet been fully validated by previous works. In this work, we show that a strong off-the-shelf frozen pretrained visual encoder, along with a well designed prediction model, can achieve state-of-the-art (SoTA) performance in forecasting and procedural planning without the need for pretraining the prediction model, nor requiring additional supervision from language or ASR. Instead of learning representations from pixel space, our method utilizes the latent embedding space of publicly available vision encoders. By conditioning on frozen clip-level embeddings from observed steps to predict the actions of unseen steps, our prediction model is able to learn robust representations for forecasting through iterative denoising - leveraging the recent advances in diffusion transformers (Peebles & Xie, 2023). Empirical studies over a total of five procedural learning tasks across four datasets (NIV, CrossTask, COIN and Ego4D-v2) show that our model advances the strong baselines in long-horizon action anticipation (+2.6% in Verb ED@20, +3.1% in Noun ED@20), and significantly improves the SoTA in step forecasting (+5.0%), task classification (+3.8%), and procedure planning tasks (up to +2.28% in success rate, +3.39% in mAcc, and +0.90% in mIoU).
GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models
Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.
Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization
This paper proposes a new framework for depth completion robust against domain-shifting issues. It exploits the generalization capability of modern stereo networks to face depth completion, by processing fictitious stereo pairs obtained through a virtual pattern projection paradigm. Any stereo network or traditional stereo matcher can be seamlessly plugged into our framework, allowing for the deployment of a virtual stereo setup that is future-proof against advancement in the stereo field. Exhaustive experiments on cross-domain generalization support our claims. Hence, we argue that our framework can help depth completion to reach new deployment scenarios.
SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images
Sparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios only requiring unconstrained sparse multi-view images. First, Gaussian surfels are predicted based on the multi-head Gaussian regression decoder, which can are represented with less degree-of-freedom but have better multi-view consistency. Furthermore, the normal vectors of Gaussian surfel are enhanced based on high-quality of normal priors. Second, the Gaussians and camera parameters (both extrinsic and intrinsic) are optimized to obtain high-quality Gaussian radiance fields for novel view synthesis tasks based on the proposed Bundle-Adjusting Gaussian Splatting module. Extensive experiments on novel view rendering and depth map prediction tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in various 3D vision tasks. More information can be found on our project page (https://yanyan-li.github.io/project/gs/smilesplat)
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
TREND: Unsupervised 3D Representation Learning via Temporal Forecasting for LiDAR Perception
Labeling LiDAR point clouds is notoriously time-and-energy-consuming, which spurs recent unsupervised 3D representation learning methods to alleviate the labeling burden in LiDAR perception via pretrained weights. Almost all existing work focus on a single frame of LiDAR point cloud and neglect the temporal LiDAR sequence, which naturally accounts for object motion (and their semantics). Instead, we propose TREND, namely Temporal REndering with Neural fielD, to learn 3D representation via forecasting the future observation in an unsupervised manner. Unlike existing work that follows conventional contrastive learning or masked auto encoding paradigms, TREND integrates forecasting for 3D pre-training through a Recurrent Embedding scheme to generate 3D embedding across time and a Temporal Neural Field to represent the 3D scene, through which we compute the loss using differentiable rendering. To our best knowledge, TREND is the first work on temporal forecasting for unsupervised 3D representation learning. We evaluate TREND on downstream 3D object detection tasks on popular datasets, including NuScenes, Once and Waymo. Experiment results show that TREND brings up to 90% more improvement as compared to previous SOTA unsupervised 3D pre-training methods and generally improve different downstream models across datasets, demonstrating that indeed temporal forecasting brings improvement for LiDAR perception. Codes and models will be released.
Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting
3D scene generation has quickly become a challenging new research direction, fueled by consistent improvements of 2D generative diffusion models. Most prior work in this area generates scenes by iteratively stitching newly generated frames with existing geometry. These works often depend on pre-trained monocular depth estimators to lift the generated images into 3D, fusing them with the existing scene representation. These approaches are then often evaluated via a text metric, measuring the similarity between the generated images and a given text prompt. In this work, we make two fundamental contributions to the field of 3D scene generation. First, we note that lifting images to 3D with a monocular depth estimation model is suboptimal as it ignores the geometry of the existing scene. We thus introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process, resulting in improved geometric coherence of the scene. Second, we introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry, and thus measures the quality of the structure of the scene.
CARFF: Conditional Auto-encoded Radiance Field for 3D Scene Forecasting
We propose CARFF: Conditional Auto-encoded Radiance Field for 3D Scene Forecasting, a method for predicting future 3D scenes given past observations, such as 2D ego-centric images. Our method maps an image to a distribution over plausible 3D latent scene configurations using a probabilistic encoder, and predicts the evolution of the hypothesized scenes through time. Our latent scene representation conditions a global Neural Radiance Field (NeRF) to represent a 3D scene model, which enables explainable predictions and straightforward downstream applications. This approach extends beyond previous neural rendering work by considering complex scenarios of uncertainty in environmental states and dynamics. We employ a two-stage training of Pose-Conditional-VAE and NeRF to learn 3D representations. Additionally, we auto-regressively predict latent scene representations as a partially observable Markov decision process, utilizing a mixture density network. We demonstrate the utility of our method in realistic scenarios using the CARLA driving simulator, where CARFF can be used to enable efficient trajectory and contingency planning in complex multi-agent autonomous driving scenarios involving visual occlusions.
Self-supervised Monocular Depth Estimation: Let's Talk About The Weather
Current, self-supervised depth estimation architectures rely on clear and sunny weather scenes to train deep neural networks. However, in many locations, this assumption is too strong. For example in the UK (2021), 149 days consisted of rain. For these architectures to be effective in real-world applications, we must create models that can generalise to all weather conditions, times of the day and image qualities. Using a combination of computer graphics and generative models, one can augment existing sunny-weather data in a variety of ways that simulate adverse weather effects. While it is tempting to use such data augmentations for self-supervised depth, in the past this was shown to degrade performance instead of improving it. In this paper, we put forward a method that uses augmentations to remedy this problem. By exploiting the correspondence between unaugmented and augmented data we introduce a pseudo-supervised loss for both depth and pose estimation. This brings back some of the benefits of supervised learning while still not requiring any labels. We also make a series of practical recommendations which collectively offer a reliable, efficient framework for weather-related augmentation of self-supervised depth from monocular video. We present extensive testing to show that our method, Robust-Depth, achieves SotA performance on the KITTI dataset while significantly surpassing SotA on challenging, adverse condition data such as DrivingStereo, Foggy CityScape and NuScenes-Night. The project website can be found here https://kieran514.github.io/Robust-Depth-Project/.
Effectively Modeling Time Series with Simple Discrete State Spaces
Time series modeling is a well-established problem, which often requires that methods (1) expressively represent complicated dependencies, (2) forecast long horizons, and (3) efficiently train over long sequences. State-space models (SSMs) are classical models for time series, and prior works combine SSMs with deep learning layers for efficient sequence modeling. However, we find fundamental limitations with these prior approaches, proving their SSM representations cannot express autoregressive time series processes. We thus introduce SpaceTime, a new state-space time series architecture that improves all three criteria. For expressivity, we propose a new SSM parameterization based on the companion matrix -- a canonical representation for discrete-time processes -- which enables SpaceTime's SSM layers to learn desirable autoregressive processes. For long horizon forecasting, we introduce a "closed-loop" variation of the companion SSM, which enables SpaceTime to predict many future time-steps by generating its own layer-wise inputs. For efficient training and inference, we introduce an algorithm that reduces the memory and compute of a forward pass with the companion matrix. With sequence length ell and state-space size d, we go from O(d ell) na\"ively to O(d + ell). In experiments, our contributions lead to state-of-the-art results on extensive and diverse benchmarks, with best or second-best AUROC on 6 / 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer forecasting tasks. Furthermore, we find SpaceTime (1) fits AR(p) processes that prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by 73% and 80% relative wall-clock time over Transformers and LSTMs.
V-FUSE: Volumetric Depth Map Fusion with Long-Range Constraints
We introduce a learning-based depth map fusion framework that accepts a set of depth and confidence maps generated by a Multi-View Stereo (MVS) algorithm as input and improves them. This is accomplished by integrating volumetric visibility constraints that encode long-range surface relationships across different views into an end-to-end trainable architecture. We also introduce a depth search window estimation sub-network trained jointly with the larger fusion sub-network to reduce the depth hypothesis search space along each ray. Our method learns to model depth consensus and violations of visibility constraints directly from the data; effectively removing the necessity of fine-tuning fusion parameters. Extensive experiments on MVS datasets show substantial improvements in the accuracy of the output fused depth and confidence maps.
Video Occupancy Models
We introduce a new family of video prediction models designed to support downstream control tasks. We call these models Video Occupancy models (VOCs). VOCs operate in a compact latent space, thus avoiding the need to make predictions about individual pixels. Unlike prior latent-space world models, VOCs directly predict the discounted distribution of future states in a single step, thus avoiding the need for multistep roll-outs. We show that both properties are beneficial when building predictive models of video for use in downstream control. Code is available at https://github.com/manantomar/video-occupancy-models{github.com/manantomar/video-occupancy-models}.
On the Benefits of Rank in Attention Layers
Attention-based mechanisms are widely used in machine learning, most prominently in transformers. However, hyperparameters such as the rank of the attention matrices and the number of heads are scaled nearly the same way in all realizations of this architecture, without theoretical justification. In this work we show that there are dramatic trade-offs between the rank and number of heads of the attention mechanism. Specifically, we present a simple and natural target function that can be represented using a single full-rank attention head for any context length, but that cannot be approximated by low-rank attention unless the number of heads is exponential in the embedding dimension, even for short context lengths. Moreover, we prove that, for short context lengths, adding depth allows the target to be approximated by low-rank attention. For long contexts, we conjecture that full-rank attention is necessary. Finally, we present experiments with off-the-shelf transformers that validate our theoretical findings.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. We propose a novel approach based on deep neural networks for modeling the dynamics of robot's interactions directly from images, by jointly estimating forward and inverse models of dynamics. The inverse model objective provides supervision to construct informative visual features, which the forward model can then predict and in turn regularize the feature space for the inverse model. The interplay between these two objectives creates useful, accurate models that can then be used for multi-step decision making. This formulation has the additional benefit that it is possible to learn forward models in an abstract feature space and thus alleviate the need of predicting pixels. Our experiments show that this joint modeling approach outperforms alternative methods.
FastDepth: Fast Monocular Depth Estimation on Embedded Systems
Depth sensing is a critical function for robotic tasks such as localization, mapping and obstacle detection. There has been a significant and growing interest in depth estimation from a single RGB image, due to the relatively low cost and size of monocular cameras. However, state-of-the-art single-view depth estimation algorithms are based on fairly complex deep neural networks that are too slow for real-time inference on an embedded platform, for instance, mounted on a micro aerial vehicle. In this paper, we address the problem of fast depth estimation on embedded systems. We propose an efficient and lightweight encoder-decoder network architecture and apply network pruning to further reduce computational complexity and latency. In particular, we focus on the design of a low-latency decoder. Our methodology demonstrates that it is possible to achieve similar accuracy as prior work on depth estimation, but at inference speeds that are an order of magnitude faster. Our proposed network, FastDepth, runs at 178 fps on an NVIDIA Jetson TX2 GPU and at 27 fps when using only the TX2 CPU, with active power consumption under 10 W. FastDepth achieves close to state-of-the-art accuracy on the NYU Depth v2 dataset. To the best of the authors' knowledge, this paper demonstrates real-time monocular depth estimation using a deep neural network with the lowest latency and highest throughput on an embedded platform that can be carried by a micro aerial vehicle.
Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries
We address 2D floorplan reconstruction from 3D scans. Existing approaches typically employ heuristically designed multi-stage pipelines. Instead, we formulate floorplan reconstruction as a single-stage structured prediction task: find a variable-size set of polygons, which in turn are variable-length sequences of ordered vertices. To solve it we develop a novel Transformer architecture that generates polygons of multiple rooms in parallel, in a holistic manner without hand-crafted intermediate stages. The model features two-level queries for polygons and corners, and includes polygon matching to make the network end-to-end trainable. Our method achieves a new state-of-the-art for two challenging datasets, Structured3D and SceneCAD, along with significantly faster inference than previous methods. Moreover, it can readily be extended to predict additional information, i.e., semantic room types and architectural elements like doors and windows. Our code and models are available at: https://github.com/ywyue/RoomFormer.
Unsupervised Monocular Depth Perception: Focusing on Moving Objects
As a flexible passive 3D sensing means, unsupervised learning of depth from monocular videos is becoming an important research topic. It utilizes the photometric errors between the target view and the synthesized views from its adjacent source views as the loss instead of the difference from the ground truth. Occlusion and scene dynamics in real-world scenes still adversely affect the learning, despite significant progress made recently. In this paper, we show that deliberately manipulating photometric errors can efficiently deal with these difficulties better. We first propose an outlier masking technique that considers the occluded or dynamic pixels as statistical outliers in the photometric error map. With the outlier masking, the network learns the depth of objects that move in the opposite direction to the camera more accurately. To the best of our knowledge, such cases have not been seriously considered in the previous works, even though they pose a high risk in applications like autonomous driving. We also propose an efficient weighted multi-scale scheme to reduce the artifacts in the predicted depth maps. Extensive experiments on the KITTI dataset and additional experiments on the Cityscapes dataset have verified the proposed approach's effectiveness on depth or ego-motion estimation. Furthermore, for the first time, we evaluate the predicted depth on the regions of dynamic objects and static background separately for both supervised and unsupervised methods. The evaluation further verifies the effectiveness of our proposed technical approach and provides some interesting observations that might inspire future research in this direction.
Putting People in their Place: Monocular Regression of 3D People in Depth
Given an image with multiple people, our goal is to directly regress the pose and shape of all the people as well as their relative depth. Inferring the depth of a person in an image, however, is fundamentally ambiguous without knowing their height. This is particularly problematic when the scene contains people of very different sizes, e.g. from infants to adults. To solve this, we need several things. First, we develop a novel method to infer the poses and depth of multiple people in a single image. While previous work that estimates multiple people does so by reasoning in the image plane, our method, called BEV, adds an additional imaginary Bird's-Eye-View representation to explicitly reason about depth. BEV reasons simultaneously about body centers in the image and in depth and, by combing these, estimates 3D body position. Unlike prior work, BEV is a single-shot method that is end-to-end differentiable. Second, height varies with age, making it impossible to resolve depth without also estimating the age of people in the image. To do so, we exploit a 3D body model space that lets BEV infer shapes from infants to adults. Third, to train BEV, we need a new dataset. Specifically, we create a "Relative Human" (RH) dataset that includes age labels and relative depth relationships between the people in the images. Extensive experiments on RH and AGORA demonstrate the effectiveness of the model and training scheme. BEV outperforms existing methods on depth reasoning, child shape estimation, and robustness to occlusion. The code and dataset are released for research purposes.
PEANUT: Predicting and Navigating to Unseen Targets
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.
Commutative Width and Depth Scaling in Deep Neural Networks
This paper is the second in the series Commutative Scaling of Width and Depth (WD) about commutativity of infinite width and depth limits in deep neural networks. Our aim is to understand the behaviour of neural functions (functions that depend on a neural network model) as width and depth go to infinity (in some sense), and eventually identify settings under which commutativity holds, i.e. the neural function tends to the same limit no matter how width and depth limits are taken. In this paper, we formally introduce and define the commutativity framework, and discuss its implications on neural network design and scaling. We study commutativity for the neural covariance kernel which reflects how network layers separate data. Our findings extend previous results established in [55] by showing that taking the width and depth to infinity in a deep neural network with skip connections, when branches are suitably scaled to avoid exploding behaviour, result in the same covariance structure no matter how that limit is taken. This has a number of theoretical and practical implications that we discuss in the paper. The proof techniques in this paper are novel and rely on tools that are more accessible to readers who are not familiar with stochastic calculus (used in the proofs of WD(I))).
Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis, the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at https://github.com/robustness-gym/summvis.
OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations
Depth completion is the task of generating a dense depth map given an image and a sparse depth map as inputs. It has important applications in various downstream tasks. In this paper, we present OGNI-DC, a novel framework for depth completion. The key to our method is "Optimization-Guided Neural Iterations" (OGNI). It consists of a recurrent unit that refines a depth gradient field and a differentiable depth integrator that integrates the depth gradients into a depth map. OGNI-DC exhibits strong generalization, outperforming baselines by a large margin on unseen datasets and across various sparsity levels. Moreover, OGNI-DC has high accuracy, achieving state-of-the-art performance on the NYUv2 and the KITTI benchmarks. Code is available at https://github.com/princeton-vl/OGNI-DC.
Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament
Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.
Effective Theory of Transformers at Initialization
We perform an effective-theory analysis of forward-backward signal propagation in wide and deep Transformers, i.e., residual neural networks with multi-head self-attention blocks and multilayer perceptron blocks. This analysis suggests particular width scalings of initialization and training hyperparameters for these models. We then take up such suggestions, training Vision and Language Transformers in practical setups.
Subhomogeneous Deep Equilibrium Models
Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feedforward, convolutional, and graph neural network examples.
Probing the Role of Positional Information in Vision-Language Models
In most Vision-Language models (VL), the understanding of the image structure is enabled by injecting the position information (PI) about objects in the image. In our case study of LXMERT, a state-of-the-art VL model, we probe the use of the PI in the representation and study its effect on Visual Question Answering. We show that the model is not capable of leveraging the PI for the image-text matching task on a challenge set where only position differs. Yet, our experiments with probing confirm that the PI is indeed present in the representation. We introduce two strategies to tackle this: (i) Positional Information Pre-training and (ii) Contrastive Learning on PI using Cross-Modality Matching. Doing so, the model can correctly classify if images with detailed PI statements match. Additionally to the 2D information from bounding boxes, we introduce the object's depth as new feature for a better object localization in the space. Even though we were able to improve the model properties as defined by our probes, it only has a negligible effect on the downstream performance. Our results thus highlight an important issue of multimodal modeling: the mere presence of information detectable by a probing classifier is not a guarantee that the information is available in a cross-modal setup.
Deep Floor Plan Recognition Using a Multi-Task Network with Room-Boundary-Guided Attention
This paper presents a new approach to recognize elements in floor plan layouts. Besides walls and rooms, we aim to recognize diverse floor plan elements, such as doors, windows and different types of rooms, in the floor layouts. To this end, we model a hierarchy of floor plan elements and design a deep multi-task neural network with two tasks: one to learn to predict room-boundary elements, and the other to predict rooms with types. More importantly, we formulate the room-boundary-guided attention mechanism in our spatial contextual module to carefully take room-boundary features into account to enhance the room-type predictions. Furthermore, we design a cross-and-within-task weighted loss to balance the multi-label tasks and prepare two new datasets for floor plan recognition. Experimental results demonstrate the superiority and effectiveness of our network over the state-of-the-art methods.
Online Deep Learning: Learning Deep Neural Networks on the Fly
Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of "Online Deep Learning" (ODL) for learning DNNs on the fly in an online setting. Unlike traditional online learning that often optimizes some convex objective function with respect to a shallow model (e.g., a linear/kernel-based hypothesis), ODL is significantly more challenging since the optimization of the DNN objective function is non-convex, and regular backpropagation does not work well in practice, especially for online learning settings. In this paper, we present a new online deep learning framework that attempts to tackle the challenges by learning DNN models of adaptive depth from a sequence of training data in an online learning setting. In particular, we propose a novel Hedge Backpropagation (HBP) method for online updating the parameters of DNN effectively, and validate the efficacy of our method on large-scale data sets, including both stationary and concept drifting scenarios.
Using Explanations to Guide Models
Deep neural networks are highly performant, but might base their decision on spurious or background features that co-occur with certain classes, which can hurt generalization. To mitigate this issue, the usage of 'model guidance' has gained popularity recently: for this, models are guided to be "right for the right reasons" by regularizing the models' explanations to highlight the right features. Experimental validation of these approaches has thus far however been limited to relatively simple and / or synthetic datasets. To gain a better understanding of which model-guiding approaches actually transfer to more challenging real-world datasets, in this work we conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets, and show that model guidance can sometimes even improve model performance. In this context, we further propose a novel energy loss, show its effectiveness in directing the model to focus on object features. We also show that these gains can be achieved even with a small fraction (e.g. 1%) of bounding box annotations, highlighting the cost effectiveness of this approach. Lastly, we show that this approach can also improve generalization under distribution shifts. Code will be made available.
Data-Efficient Reinforcement Learning with Self-Predictive Representations
While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interaction with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Self-Predictive Representations(SPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent's parameters and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent's representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.415 on Atari in a setting limited to 100k steps of environment interaction, which represents a 55% relative improvement over the previous state-of-the-art. Notably, even in this limited data regime, SPR exceeds expert human scores on 7 out of 26 games. The code associated with this work is available at https://github.com/mila-iqia/spr
SPHERE: A Hierarchical Evaluation on Spatial Perception and Reasoning for Vision-Language Models
Current vision-language models may incorporate single-dimensional spatial cues, such as depth, object boundary, and basic spatial directions (e.g. left, right, front, back), yet often lack the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications. To address this gap, we develop SPHERE (Spatial Perception and Hierarchical Evaluation of REasoning), a hierarchical evaluation framework with a new human-annotated dataset to pinpoint model strengths and weaknesses, advancing from single-skill tasks to multi-skill tasks, and ultimately to complex reasoning tasks that require the integration of multiple spatial and visual cues with logical reasoning. Benchmark evaluation of state-of-the-art open-source models reveal significant shortcomings, especially in the abilities to understand distance and proximity, to reason from both allocentric and egocentric viewpoints, and to perform complex reasoning in a physical context. This work underscores the need for more advanced approaches to spatial understanding and reasoning, paving the way for improvements in vision-language models and their alignment with human-like spatial capabilities. The dataset will be open-sourced upon publication.
The Impact of Depth and Width on Transformer Language Model Generalization
To process novel sentences, language models (LMs) must generalize compositionally -- combine familiar elements in new ways. What aspects of a model's structure promote compositional generalization? Focusing on transformers, we test the hypothesis, motivated by recent theoretical and empirical work, that transformers generalize more compositionally when they are deeper (have more layers). Because simply adding layers increases the total number of parameters, confounding depth and size, we construct three classes of models which trade off depth for width such that the total number of parameters is kept constant (41M, 134M and 374M parameters). We pretrain all models as LMs and fine-tune them on tasks that test for compositional generalization. We report three main conclusions: (1) after fine-tuning, deeper models generalize better out-of-distribution than shallower models do, but the relative benefit of additional layers diminishes rapidly; (2) within each family, deeper models show better language modeling performance, but returns are similarly diminishing; (3) the benefits of depth for compositional generalization cannot be attributed solely to better performance on language modeling or on in-distribution data.
Learning to Synthesize a 4D RGBD Light Field from a Single Image
We present a machine learning algorithm that takes as input a 2D RGB image and synthesizes a 4D RGBD light field (color and depth of the scene in each ray direction). For training, we introduce the largest public light field dataset, consisting of over 3300 plenoptic camera light fields of scenes containing flowers and plants. Our synthesis pipeline consists of a convolutional neural network (CNN) that estimates scene geometry, a stage that renders a Lambertian light field using that geometry, and a second CNN that predicts occluded rays and non-Lambertian effects. Our algorithm builds on recent view synthesis methods, but is unique in predicting RGBD for each light field ray and improving unsupervised single image depth estimation by enforcing consistency of ray depths that should intersect the same scene point. Please see our supplementary video at https://youtu.be/yLCvWoQLnms