new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 3

A Generative Self-Supervised Framework using Functional Connectivity in fMRI Data

Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity due to the increasing availability of data and advances in model architectures, including Graph Neural Network (GNN). Recent research on the application of GNN to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction. However, the high cost of acquiring high-quality fMRI data and corresponding phenotypic labels poses a hurdle to their application in real-world settings, such that a model na\"ively trained in a supervised fashion can suffer from insufficient performance or a lack of generalization on a small number of data. In addition, most Self-Supervised Learning (SSL) approaches for GNNs to date adopt a contrastive strategy, which tends to lose appropriate semantic information when the graph structure is perturbed or does not leverage both spatial and temporal information simultaneously. In light of these challenges, we propose a generative SSL approach that is tailored to effectively harness spatio-temporal information within dynamic FC. Our empirical results, experimented with large-scale (>50,000) fMRI datasets, demonstrate that our approach learns valuable representations and enables the construction of accurate and robust models when fine-tuned for downstream tasks.

fMRI-3D: A Comprehensive Dataset for Enhancing fMRI-based 3D Reconstruction

Reconstructing 3D visuals from functional Magnetic Resonance Imaging (fMRI) data, introduced as Recon3DMind in our conference work, is of significant interest to both cognitive neuroscience and computer vision. To advance this task, we present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4768 3D objects. The dataset comprises two components: fMRI-Shape, previously introduced and accessible at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Shape, and fMRI-Objaverse, proposed in this paper and available at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Objaverse. fMRI-Objaverse includes data from 5 subjects, 4 of whom are also part of the Core set in fMRI-Shape, with each subject viewing 3142 3D objects across 117 categories, all accompanied by text captions. This significantly enhances the diversity and potential applications of the dataset. Additionally, we propose MinD-3D, a novel framework designed to decode 3D visual information from fMRI signals. The framework first extracts and aggregates features from fMRI data using a neuro-fusion encoder, then employs a feature-bridge diffusion model to generate visual features, and finally reconstructs the 3D object using a generative transformer decoder. We establish new benchmarks by designing metrics at both semantic and structural levels to evaluate model performance. Furthermore, we assess our model's effectiveness in an Out-of-Distribution setting and analyze the attribution of the extracted features and the visual ROIs in fMRI signals. Our experiments demonstrate that MinD-3D not only reconstructs 3D objects with high semantic and spatial accuracy but also deepens our understanding of how human brain processes 3D visual information. Project page at: https://jianxgao.github.io/MinD-3D.

See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI

Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system. However, the scarcity of fMRI data and noise hamper brain decoding model performance. Previous approaches primarily employ subject-specific models, sensitive to training sample size. In this paper, we explore a straightforward but overlooked solution to address data scarcity. We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations. Subsequently, a shared deeper decoding model decodes cross-subject features into the target feature space. During training, we leverage both visual and textual supervision for multi-modal brain decoding. Our model integrates a high-level perception decoding pipeline and a pixel-wise reconstruction pipeline guided by high-level perceptions, simulating bottom-up and top-down processes in neuroscience. Empirical experiments demonstrate robust neural representation learning across subjects for both pipelines. Moreover, merging high-level and low-level information improves both low-level and high-level reconstruction metrics. Additionally, we successfully transfer learned general knowledge to new subjects by training new adapters with limited training data. Compared to previous state-of-the-art methods, notably pre-training-based methods (Mind-Vis and fMRI-PTE), our approach achieves comparable or superior results across diverse tasks, showing promise as an alternative method for cross-subject fMRI data pre-training. Our code and pre-trained weights will be publicly released at https://github.com/YulongBonjour/See_Through_Their_Minds.

Brain Captioning: Decoding human brain activity into images and text

Every day, the human brain processes an immense volume of visual information, relying on intricate neural mechanisms to perceive and interpret these stimuli. Recent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled scientists to extract visual information from human brain activity patterns. In this study, we present an innovative method for decoding brain activity into meaningful images and captions, with a specific focus on brain captioning due to its enhanced flexibility as compared to brain decoding into images. Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline that utilizes latent diffusion models and depth estimation. We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight subjects who viewed images from the COCO dataset. We employed the Generative Image-to-text Transformer (GIT) as our backbone for captioning and propose a new image reconstruction pipeline based on latent diffusion models. The method involves training regularized linear regression models between brain activity and extracted features. Additionally, we incorporated depth maps from the ControlNet model to further guide the reconstruction process. We evaluate our methods using quantitative metrics for both generated captions and images. Our brain captioning approach outperforms existing methods, while our image reconstruction pipeline generates plausible images with improved spatial relationships. In conclusion, we demonstrate significant progress in brain decoding, showcasing the enormous potential of integrating vision and language to better understand human cognition. Our approach provides a flexible platform for future research, with potential applications in various fields, including neural art, style transfer, and portable devices.

Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models

Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advancements in functional Magnetic Resonance Imaging and machine learning have greatly improved our ability to map visual stimuli to brain activity, especially in the visual cortex. Concurrently, research has expanded into decoding more complex processes like language and memory across the whole brain, utilizing techniques to handle greater variability and improve signal accuracy. We argue that "seeing" involves more than just mapping visual stimuli onto the visual cortex; it engages the entire brain, as various emotions and cognitive states can emerge from observing different scenes. In this paper, we develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps while individuals are exposed to visual stimuli. We utilize large-scale fMRI encoders and Image generative models pre-trained on large public datasets, which are then fine-tuned through Image-fMRI contrastive learning. Our models hence can decode visual experience across the entire cerebral cortex, surpassing the traditional confines of the visual cortex. We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%. A network ablation analysis suggests that beyond the visual cortex, the default mode network contributes most to decoding stimuli, in line with the proposed role of this network in sense-making and semantic processing. Additionally, we implemented zero-shot imagination decoding on an extra validation dataset, achieving a p-value of 0.0206 for mapping the reconstructed images and ground-truth text stimuli, which substantiates the model's capability to capture semantic meanings across various scenarios.

Exploiting the Brain's Network Structure for Automatic Identification of ADHD Subjects

Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state Functional Magnetic Resonance Imaging (fMRI) sequences of the brain. We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD-related differences lie in some specific regions of the brain and using features only from those regions is sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask that includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.

Brain decoding: toward real-time reconstruction of visual perception

In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (approx0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (approx5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that high-level visual features can be decoded from MEG signals, although the same approach applied to 7T fMRI also recovers better low-level features. Overall, these results, while preliminary, provide an important step towards the decoding -- in real-time -- of the visual processes continuously unfolding within the human brain.

MinD-3D: Reconstruct High-quality 3D objects in Human Brain

In this paper, we introduce Recon3DMind, an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals, marking a significant advancement in the fields of cognitive neuroscience and computer vision. To support this pioneering task, we present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects to enable comprehensive fMRI signal capture across various settings, thereby laying a foundation for future research. Furthermore, we propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals, demonstrating the feasibility of this challenging task. The framework begins by extracting and aggregating features from fMRI frames through a neuro-fusion encoder, subsequently employs a feature bridge diffusion model to generate visual features, and ultimately recovers the 3D object via a generative transformer decoder. We assess the performance of MinD-3D using a suite of semantic and structural metrics and analyze the correlation between the features extracted by our model and the visual regions of interest (ROIs) in fMRI signals. Our findings indicate that MinD-3D not only reconstructs 3D objects with high semantic relevance and spatial similarity but also significantly enhances our understanding of the human brain's capabilities in processing 3D visual information. Project page at: https://jianxgao.github.io/MinD-3D.

MindBridge: A Cross-Subject Brain Decoding Framework

Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: https://littlepure2333.github.io/MindBridge

BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals

The human brain is a complex, dynamic network, which is commonly studied using functional magnetic resonance imaging (fMRI) and modeled as network of Regions of interest (ROIs) for understanding various brain functions. Recent studies utilize deep learning approaches to learn the brain network representation based on functional connectivity (FC) profile, broadly falling into two main categories. The Fixed-FC approaches, utilizing the FC profile which represents the linear temporal relation within the brain network, are limited by failing to capture informative brain temporal dynamics. On the other hand, the Dynamic-FC approaches, modeling the evolving FC profile over time, often exhibit less satisfactory performance due to challenges in handling the inherent noisy nature of fMRI data. To address these challenges, we propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data. Our approach incorporates two essential components: a region-aware graph attention mechanism designed to capture the relationships between different brain ROIs, and a novel self-supervised masked autoencoding framework for effective model pre-training. These components enable the model to capture rich temporal dynamics of brain activity while maintaining resilience to inherent noise in fMRI data. Our experiments demonstrate that BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks. Finally, leveraging the model's inherent interpretability, our analysis of model-generated representations reveals findings that resonate with ongoing research in the field of neuroscience.

Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging

We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.

Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias

Magnetic resonance imaging (MRI) is the standard modality to understand human brain structure and function in vivo (antemortem). Decades of research in human neuroimaging has led to the widespread development of methods and tools to provide automated volume-based segmentations and surface-based parcellations which help localize brain functions to specialized anatomical regions. Recently ex vivo (postmortem) imaging of the brain has opened-up avenues to study brain structure at sub-millimeter ultra high-resolution revealing details not possible to observe with in vivo MRI. Unfortunately, there has been limited methodological development in ex vivo MRI primarily due to lack of datasets and limited centers with such imaging resources. Therefore, in this work, we present one-of-its-kind dataset of 82 ex vivo T2w whole brain hemispheres MRI at 0.3 mm isotropic resolution spanning Alzheimer's disease and related dementias. We adapted and developed a fast and easy-to-use automated surface-based pipeline to parcellate, for the first time, ultra high-resolution ex vivo brain tissue at the native subject space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas. This allows us to perform vertex-wise analysis in the template space and thereby link morphometry measures with pathology measurements derived from histology. We will open-source our dataset docker container, Jupyter notebooks for ready-to-use out-of-the-box set of tools and command line options to advance ex vivo MRI clinical brain imaging research on the project webpage.

SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation

Magnetic resonance imaging (MRI) is a cornerstone of modern medical imaging. However, long image acquisition times, the need for qualitative expert analysis, and the lack of (and difficulty extracting) quantitative indicators that are sensitive to tissue health have curtailed widespread clinical and research studies. While recent machine learning methods for MRI reconstruction and analysis have shown promise for reducing this burden, these techniques are primarily validated with imperfect image quality metrics, which are discordant with clinically-relevant measures that ultimately hamper clinical deployment and clinician trust. To mitigate this challenge, we present the Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset, a collection of quantitative knee MRI (qMRI) scans that enables end-to-end, clinically-relevant evaluation of MRI reconstruction and analysis tools. This 1.6TB dataset consists of raw-data measurements of ~25,000 slices (155 patients) of anonymized patient MRI scans, the corresponding scanner-generated DICOM images, manual segmentations of four tissues, and bounding box annotations for sixteen clinically relevant pathologies. We provide a framework for using qMRI parameter maps, along with image reconstructions and dense image labels, for measuring the quality of qMRI biomarker estimates extracted from MRI reconstruction, segmentation, and detection techniques. Finally, we use this framework to benchmark state-of-the-art baselines on this dataset. We hope our SKM-TEA dataset and code can enable a broad spectrum of research for modular image reconstruction and image analysis in a clinically informed manner. Dataset access, code, and benchmarks are available at https://github.com/StanfordMIMI/skm-tea.

Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models

A long standing goal in neuroscience has been to elucidate the functional organization of the brain. Within higher visual cortex, functional accounts have remained relatively coarse, focusing on regions of interest (ROIs) and taking the form of selectivity for broad categories such as faces, places, bodies, food, or words. Because the identification of such ROIs has typically relied on manually assembled stimulus sets consisting of isolated objects in non-ecological contexts, exploring functional organization without robust a priori hypotheses has been challenging. To overcome these limitations, we introduce a data-driven approach in which we synthesize images predicted to activate a given brain region using paired natural images and fMRI recordings, bypassing the need for category-specific stimuli. Our approach -- Brain Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative methods by combining large-scale diffusion models with brain-guided image synthesis. Validating our method, we demonstrate the ability to synthesize preferred images with appropriate semantic specificity for well-characterized category-selective ROIs. We then show that BrainDiVE can characterize differences between ROIs selective for the same high-level category. Finally we identify novel functional subdivisions within these ROIs, validated with behavioral data. These results advance our understanding of the fine-grained functional organization of human visual cortex, and provide well-specified constraints for further examination of cortical organization using hypothesis-driven methods.

Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction

Magnetic Resonance Imaging can produce detailed images of the anatomy and physiology of the human body that can assist doctors in diagnosing and treating pathologies such as tumours. However, MRI suffers from very long acquisition times that make it susceptible to patient motion artifacts and limit its potential to deliver dynamic treatments. Conventional approaches such as Parallel Imaging and Compressed Sensing allow for an increase in MRI acquisition speed by reconstructing MR images from sub-sampled MRI data acquired using multiple receiver coils. Recent advancements in Deep Learning combined with Parallel Imaging and Compressed Sensing techniques have the potential to produce high-fidelity reconstructions from highly accelerated MRI data. In this work we present a novel Deep Learning-based Inverse Problem solver applied to the task of Accelerated MRI Reconstruction, called the Recurrent Variational Network (RecurrentVarNet), by exploiting the properties of Convolutional Recurrent Neural Networks and unrolled algorithms for solving Inverse Problems. The RecurrentVarNet consists of multiple recurrent blocks, each responsible for one iteration of the unrolled variational optimization scheme for solving the inverse problem of multi-coil Accelerated MRI Reconstruction. Contrary to traditional approaches, the optimization steps are performed in the observation domain (k-space) instead of the image domain. Each block of the RecurrentVarNet refines the observed k-space and comprises a data consistency term and a recurrent unit which takes as input a learned hidden state and the prediction of the previous block. Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-coil brain dataset, outperforming previous conventional and deep learning-based approaches.

A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds

Objective: fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods: We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevelopmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results: We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion: Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance: Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

Magnetic resonance imaging (MRI) is a central modality for stroke imaging. It is used upon patient admission to make treatment decisions such as selecting patients for intravenous thrombolysis or endovascular therapy. MRI is later used in the duration of hospital stay to predict outcome by visualizing infarct core size and location. Furthermore, it may be used to characterize stroke etiology, e.g. differentiation between (cardio)-embolic and non-embolic stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. Previous iterations of the Ischemic Stroke Lesion Segmentation (ISLES) challenge have aided in the generation of identifying benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions. This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n=250 and a test dataset of n=150. All training data will be made publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge with the goal of finding algorithmic methods to enable the development and benchmarking of robust and accurate segmentation algorithms for ischemic stroke.

Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities

Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/BM-MAE

Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI Reconstruction Models and their Generalizability to Varying Coil Configurations

Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The Multi-Coil Magnetic Resonance Image (MC-MRI) Reconstruction Challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: 1) to compare different MRI reconstruction models on this dataset and 2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design, and summarize the results of a set of baseline and state of the art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.

Reconstructing the Mind's Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors

We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye's performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.

HA-HI: Synergising fMRI and DTI through Hierarchical Alignments and Hierarchical Interactions for Mild Cognitive Impairment Diagnosis

Early diagnosis of mild cognitive impairment (MCI) and subjective cognitive decline (SCD) utilizing multi-modal magnetic resonance imaging (MRI) is a pivotal area of research. While various regional and connectivity features from functional MRI (fMRI) and diffusion tensor imaging (DTI) have been employed to develop diagnosis models, most studies integrate these features without adequately addressing their alignment and interactions. This limits the potential to fully exploit the synergistic contributions of combined features and modalities. To solve this gap, our study introduces a novel Hierarchical Alignments and Hierarchical Interactions (HA-HI) method for MCI and SCD classification, leveraging the combined strengths of fMRI and DTI. HA-HI efficiently learns significant MCI- or SCD- related regional and connectivity features by aligning various feature types and hierarchically maximizing their interactions. Furthermore, to enhance the interpretability of our approach, we have developed the Synergistic Activation Map (SAM) technique, revealing the critical brain regions and connections that are indicative of MCI/SCD. Comprehensive evaluations on the ADNI dataset and our self-collected data demonstrate that HA-HI outperforms other existing methods in diagnosing MCI and SCD, making it a potentially vital and interpretable tool for early detection. The implementation of this method is publicly accessible at https://github.com/ICI-BCI/Dual-MRI-HA-HI.git.

Deep Generative Modeling with Spatial and Network Images: An Explainable AI (XAI) Approach

This article addresses the challenge of modeling the amplitude of spatially indexed low frequency fluctuations (ALFF) in resting state functional MRI as a function of cortical structural features and a multi-task coactivation network in the Adolescent Brain Cognitive Development (ABCD) Study. It proposes a generative model that integrates effects of spatially-varying inputs and a network-valued input using deep neural networks to capture complex non-linear and spatial associations with the output. The method models spatial smoothness, accounts for subject heterogeneity and complex associations between network and spatial images at different scales, enables accurate inference of each images effect on the output image, and allows prediction with uncertainty quantification via Monte Carlo dropout, contributing to one of the first Explainable AI (XAI) frameworks for heterogeneous imaging data. The model is highly scalable to high-resolution data without the heavy pre-processing or summarization often required by Bayesian methods. Empirical results demonstrate its strong performance compared to existing statistical and deep learning methods. We applied the XAI model to the ABCD data which revealed associations between cortical features and ALFF throughout the entire brain. Our model performed comparably to existing methods in predictive accuracy but provided superior uncertainty quantification and faster computation, demonstrating its effectiveness for large-scale neuroimaging analysis. Open-source software in Python for XAI is available.

NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation

Recent fMRI-to-image approaches mainly focused on associating fMRI signals with specific conditions of pre-trained diffusion models. These approaches, while producing high-quality images, capture only a limited aspect of the complex information in fMRI signals and offer little detailed control over image creation. In contrast, this paper proposes to directly modulate the generation process of diffusion models using fMRI signals. Our approach, NeuroPictor, divides the fMRI-to-image process into three steps: i) fMRI calibrated-encoding, to tackle multi-individual pre-training for a shared latent space to minimize individual difference and enable the subsequent cross-subject training; ii) fMRI-to-image cross-subject pre-training, perceptually learning to guide diffusion model with high- and low-level conditions across different individuals; iii) fMRI-to-image single-subject refining, similar with step ii but focus on adapting to particular individual. NeuroPictor extracts high-level semantic features from fMRI signals that characterizing the visual stimulus and incrementally fine-tunes the diffusion model with a low-level manipulation network to provide precise structural instructions. By training with over 60,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity, particularly in the within-subject setting, as evidenced in benchmark datasets. Project page: https://jingyanghuo.github.io/neuropictor/.

Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection

This paper presents a data-driven, task-specific paradigm for experimental design, to shorten acquisition time, reduce costs, and accelerate the deployment of imaging devices. Current approaches in experimental design focus on model-parameter estimation and require specification of a particular model, whereas in imaging, other tasks may drive the design. Furthermore, such approaches often lead to intractable optimization problems in real-world imaging applications. Here we present a new paradigm for experimental design that simultaneously optimizes the design (set of image channels) and trains a machine-learning model to execute a user-specified image-analysis task. The approach obtains data densely-sampled over the measurement space (many image channels) for a small number of acquisitions, then identifies a subset of channels of prespecified size that best supports the task. We propose a method: TADRED for TAsk-DRiven Experimental Design in imaging, to identify the most informative channel-subset whilst simultaneously training a network to execute the task given the subset. Experiments demonstrate the potential of TADRED in diverse imaging applications: several clinically-relevant tasks in magnetic resonance imaging; and remote sensing and physiological applications of hyperspectral imaging. Results show substantial improvement over classical experimental design, two recent application-specific methods within the new paradigm, and state-of-the-art approaches in supervised feature selection. We anticipate further applications of our approach. Code is available: https://github.com/sbb-gh/experimental-design-multichannel

The Topology and Geometry of Neural Representations

A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.

Brain-ID: Learning Contrast-agnostic Anatomical Representations for Brain Imaging

Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography (CT), yet they struggle to generalize in uncalibrated modalities -- notably magnetic resonance (MR) imaging, where performance is highly sensitive to the differences in MR contrast, resolution, and orientation. This prevents broad applicability to diverse real-world clinical protocols. We introduce Brain-ID, an anatomical representation learning model for brain imaging. With the proposed "mild-to-severe" intra-subject generation, Brain-ID is robust to the subject-specific brain anatomy regardless of the appearance of acquired images (e.g., contrast, deformation, resolution, artifacts). Trained entirely on synthetic data, Brain-ID readily adapts to various downstream tasks through only one layer. We present new metrics to validate the intra- and inter-subject robustness of Brain-ID features, and evaluate their performance on four downstream applications, covering contrast-independent (anatomy reconstruction/contrast synthesis, brain segmentation), and contrast-dependent (super-resolution, bias field estimation) tasks. Extensive experiments on six public datasets demonstrate that Brain-ID achieves state-of-the-art performance in all tasks on different MRI modalities and CT, and more importantly, preserves its performance on low-resolution and small datasets. Code is available at https://github.com/peirong26/Brain-ID.

DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI

Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation. Dynamic MRI is an essential tool for interventions to visualise movements or changes of the target organ. However, such MRI acquisition with high temporal resolution suffers from limited spatial resolution - also known as the spatio-temporal trade-off of dynamic MRI. Several approaches, including deep learning based super-resolution approaches, have been proposed to mitigate this trade-off. Nevertheless, such an approach typically aims to super-resolve each time-point separately, treating them as individual volumes. This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships. A modified 3D UNet model, DDoS-UNet, is proposed - which takes the low-resolution volume of the current time-point along with a prior image volume. Initially, the network is supplied with a static high-resolution planning scan as the prior image along with the low-resolution input to super-resolve the first time-point. Then it continues step-wise by using the super-resolved time-points as the prior image while super-resolving the subsequent time-points. The model performance was tested with 3D dynamic data that was undersampled to different in-plane levels. The proposed network achieved an average SSIM value of 0.951pm0.017 while reconstructing the lowest resolution data (i.e. only 4\% of the k-space acquired) - which could result in a theoretical acceleration factor of 25. The proposed approach can be used to reduce the required scan-time while achieving high spatial resolution.

Fine-tuning deep learning model parameters for improved super-resolution of dynamic MRI with prior-knowledge

Dynamic imaging is a beneficial tool for interventions to assess physiological changes. Nonetheless during dynamic MRI, while achieving a high temporal resolution, the spatial resolution is compromised. To overcome this spatio-temporal trade-off, this research presents a super-resolution (SR) MRI reconstruction with prior knowledge based fine-tuning to maximise spatial information while reducing the required scan-time for dynamic MRIs. An U-Net based network with perceptual loss is trained on a benchmark dataset and fine-tuned using one subject-specific static high resolution MRI as prior knowledge to obtain high resolution dynamic images during the inference stage. 3D dynamic data for three subjects were acquired with different parameters to test the generalisation capabilities of the network. The method was tested for different levels of in-plane undersampling for dynamic MRI. The reconstructed dynamic SR results after fine-tuning showed higher similarity with the high resolution ground-truth, while quantitatively achieving statistically significant improvement. The average SSIM of the lowest resolution experimented during this research (6.25~\% of the k-space) before and after fine-tuning were 0.939 pm 0.008 and 0.957 pm 0.006 respectively. This could theoretically result in an acceleration factor of 16, which can potentially be acquired in less than half a second. The proposed approach shows that the super-resolution MRI reconstruction with prior-information can alleviate the spatio-temporal trade-off in dynamic MRI, even for high acceleration factors.

Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis

Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.

BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP for Generic Natural Visual Stimulus Decoding

Due to the lack of paired samples and the low signal-to-noise ratio of functional MRI (fMRI) signals, reconstructing perceived natural images or decoding their semantic contents from fMRI data are challenging tasks. In this work, we propose, for the first time, a task-agnostic fMRI-based brain decoding model, BrainCLIP, which leverages CLIP's cross-modal generalization ability to bridge the modality gap between brain activity, image, and text. Our experiments demonstrate that CLIP can act as a pivot for generic brain decoding tasks, including zero-shot visual categories decoding, fMRI-image/text matching, and fMRI-to-image generation. Specifically, BrainCLIP aims to train a mapping network that transforms fMRI patterns into a well-aligned CLIP embedding space by combining visual and textual supervision. Our experiments show that this combination can boost the decoding model's performance on certain tasks like fMRI-text matching and fMRI-to-image generation. On the zero-shot visual category decoding task, BrainCLIP achieves significantly better performance than BraVL, a recently proposed multi-modal method specifically designed for this task. BrainCLIP can also reconstruct visual stimuli with high semantic fidelity and establishes a new state-of-the-art for fMRI-based natural image reconstruction in terms of high-level semantic features.

Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex

Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.

Natural scene reconstruction from fMRI signals using generative latent diffusion

In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these properties together for complex scene images. Generative AI has recently made a leap forward with latent diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative technology for brain decoding. We present a two-stage scene reconstruction framework called ``Brain-Diffuser''. In the first stage, starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset benchmark, our method outperforms previous models both qualitatively and quantitatively. When applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our trained model creates compelling ``ROI-optimal'' scenes consistent with neuroscientific knowledge. Thus, the proposed methodology can have an impact on both applied (e.g. brain-computer interface) and fundamental neuroscience.

fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data

In this paper, we introduce fastHDMI, a Python package designed for efficient variable screening in high-dimensional datasets, particularly neuroimaging data. This work pioneers the application of three mutual information estimation methods for neuroimaging variable selection, a novel approach implemented via fastHDMI. These advancements enhance our ability to analyze the complex structures of neuroimaging datasets, providing improved tools for variable selection in high-dimensional spaces. Using the preprocessed ABIDE dataset, we evaluate the performance of these methods through extensive simulations. The tests cover a range of conditions, including linear and nonlinear associations, as well as continuous and binary outcomes. Our results highlight the superiority of the FFTKDE-based mutual information estimation for feature screening in continuous nonlinear outcomes, while binning-based methods outperform others for binary outcomes with nonlinear probability preimages. For linear simulations, both Pearson correlation and FFTKDE-based methods show comparable performance for continuous outcomes, while Pearson excels in binary outcomes with linear probability preimages. A comprehensive case study using the ABIDE dataset further demonstrates fastHDMI's practical utility, showcasing the predictive power of models built from variables selected using our screening techniques. This research affirms the computational efficiency and methodological strength of fastHDMI, significantly enriching the toolkit available for neuroimaging analysis.

Assessment of Data Consistency through Cascades of Independently Recurrent Inference Machines for fast and robust accelerated MRI reconstruction

Machine Learning methods can learn how to reconstruct Magnetic Resonance Images and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance. We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to CS as well as to other methods is performed: the E2EVN, CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5x prospectively undersampled 3D FLAIR MRI data of Multiple Sclerosis (MS) patients with white matter lesions. The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images. The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.

Is a PET all you need? A multi-modal study for Alzheimer's disease using 3D CNNs

Alzheimer's Disease (AD) is the most common form of dementia and often difficult to diagnose due to the multifactorial etiology of dementia. Recent works on neuroimaging-based computer-aided diagnosis with deep neural networks (DNNs) showed that fusing structural magnetic resonance images (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) leads to improved accuracy in a study population of healthy controls and subjects with AD. However, this result conflicts with the established clinical knowledge that FDG-PET better captures AD-specific pathologies than sMRI. Therefore, we propose a framework for the systematic evaluation of multi-modal DNNs and critically re-evaluate single- and multi-modal DNNs based on FDG-PET and sMRI for binary healthy vs. AD, and three-way healthy/mild cognitive impairment/AD classification. Our experiments demonstrate that a single-modality network using FDG-PET performs better than MRI (accuracy 0.91 vs 0.87) and does not show improvement when combined. This conforms with the established clinical knowledge on AD biomarkers, but raises questions about the true benefit of multi-modal DNNs. We argue that future work on multi-modal fusion should systematically assess the contribution of individual modalities following our proposed evaluation framework. Finally, we encourage the community to go beyond healthy vs. AD classification and focus on differential diagnosis of dementia, where fusing multi-modal image information conforms with a clinical need.

Enhanced Contrastive Learning with Multi-view Longitudinal Data for Chest X-ray Report Generation

Automated radiology report generation offers an effective solution to alleviate radiologists' workload. However, most existing methods focus primarily on single or fixed-view images to model current disease conditions, which limits diagnostic accuracy and overlooks disease progression. Although some approaches utilize longitudinal data to track disease progression, they still rely on single images to analyze current visits. To address these issues, we propose enhanced contrastive learning with Multi-view Longitudinal data to facilitate chest X-ray Report Generation, named MLRG. Specifically, we introduce a multi-view longitudinal contrastive learning method that integrates spatial information from current multi-view images and temporal information from longitudinal data. This method also utilizes the inherent spatiotemporal information of radiology reports to supervise the pre-training of visual and textual representations. Subsequently, we present a tokenized absence encoding technique to flexibly handle missing patient-specific prior knowledge, allowing the model to produce more accurate radiology reports based on available prior knowledge. Extensive experiments on MIMIC-CXR, MIMIC-ABN, and Two-view CXR datasets demonstrate that our MLRG outperforms recent state-of-the-art methods, achieving a 2.3% BLEU-4 improvement on MIMIC-CXR, a 5.5% F1 score improvement on MIMIC-ABN, and a 2.7% F1 RadGraph improvement on Two-view CXR.

Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge

In this work, we introduce Brain Latent Progression (BrLP), a novel spatiotemporal disease progression model based on latent diffusion. BrLP is designed to predict the evolution of diseases at the individual level on 3D brain MRIs. Existing deep generative models developed for this task are primarily data-driven and face challenges in learning disease progressions. BrLP addresses these challenges by incorporating prior knowledge from disease models to enhance the accuracy of predictions. To implement this, we propose to integrate an auxiliary model that infers volumetric changes in various brain regions. Additionally, we introduce Latent Average Stabilization (LAS), a novel technique to improve spatiotemporal consistency of the predicted progression. BrLP is trained and evaluated on a large dataset comprising 11,730 T1-weighted brain MRIs from 2,805 subjects, collected from three publicly available, longitudinal Alzheimer's Disease (AD) studies. In our experiments, we compare the MRI scans generated by BrLP with the actual follow-up MRIs available from the subjects, in both cross-sectional and longitudinal settings. BrLP demonstrates significant improvements over existing methods, with an increase of 22% in volumetric accuracy across AD-related brain regions and 43% in image similarity to the ground-truth scans. The ability of BrLP to generate conditioned 3D scans at the subject level, along with the novelty of integrating prior knowledge to enhance accuracy, represents a significant advancement in disease progression modeling, opening new avenues for precision medicine. The code of BrLP is available at the following link: https://github.com/LemuelPuglisi/BrLP.

NestedMorph: Enhancing Deformable Medical Image Registration with Nested Attention Mechanisms

Deformable image registration is crucial for aligning medical images in a non-linear fashion across different modalities, allowing for precise spatial correspondence between varying anatomical structures. This paper presents NestedMorph, a novel network utilizing a Nested Attention Fusion approach to improve intra-subject deformable registration between T1-weighted (T1w) MRI and diffusion MRI (dMRI) data. NestedMorph integrates high-resolution spatial details from an encoder with semantic information from a decoder using a multi-scale framework, enhancing both local and global feature extraction. Our model notably outperforms existing methods, including CNN-based approaches like VoxelMorph, MIDIR, and CycleMorph, as well as Transformer-based models such as TransMorph and ViT-V-Net, and traditional techniques like NiftyReg and SyN. Evaluations on the HCP dataset demonstrate that NestedMorph achieves superior performance across key metrics, including SSIM, HD95, and SDlogJ, with the highest SSIM of 0.89, and the lowest HD95 of 2.5 and SDlogJ of 0.22. These results highlight NestedMorph's ability to capture both local and global image features effectively, leading to superior registration performance. The promising outcomes of this study underscore NestedMorph's potential to significantly advance deformable medical image registration, providing a robust framework for future research and clinical applications. The source code and our implementation are available at: https://bit.ly/3zdVqcg

ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging

AI is revolutionizing MRI along the acquisition and processing chain. Advanced AI frameworks have been developed to apply AI in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. Existing frameworks are often designed to perform tasks independently or are focused on specific models or datasets, limiting generalization. We introduce ATOMMIC, an open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using DL networks and enables MultiTask Learning (MTL) to perform related tasks integrated, targeting generalization in the MRI domain. We first review the current state of AI frameworks for MRI through a comprehensive literature search and by parsing 12,479 GitHub repositories. We benchmark 25 DL models on eight publicly available datasets to present distinct applications of ATOMMIC on accelerated MRI reconstruction, image segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and image segmentation utilizing MTL. Our findings demonstrate that ATOMMIC is the only MTL framework with harmonized complex-valued and real-valued data support. Evaluations on single tasks show that physics-based models, which enforce data consistency by leveraging the physical properties of MRI, outperform other models in reconstructing highly accelerated acquisitions. Physics-based models that produce high reconstruction quality can accurately estimate quantitative parameter maps. When high-performing reconstruction models are combined with robust segmentation networks utilizing MTL, performance is improved in both tasks. ATOMMIC facilitates MRI reconstruction and analysis by standardizing workflows, enhancing data interoperability, integrating unique features like MTL, and effectively benchmarking DL models.

cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis

This paper contributes to the "BraTS 2024 Brain MR Image Synthesis Challenge" and presents a conditional Wavelet Diffusion Model (cWDM) for directly solving a paired image-to-image translation task on high-resolution volumes. While deep learning-based brain tumor segmentation models have demonstrated clear clinical utility, they typically require MR scans from various modalities (T1, T1ce, T2, FLAIR) as input. However, due to time constraints or imaging artifacts, some of these modalities may be missing, hindering the application of well-performing segmentation algorithms in clinical routine. To address this issue, we propose a method that synthesizes one missing modality image conditioned on three available images, enabling the application of downstream segmentation models. We treat this paired image-to-image translation task as a conditional generation problem and solve it by combining a Wavelet Diffusion Model for high-resolution 3D image synthesis with a simple conditioning strategy. This approach allows us to directly apply our model to full-resolution volumes, avoiding artifacts caused by slice- or patch-wise data processing. While this work focuses on a specific application, the presented method can be applied to all kinds of paired image-to-image translation problems, such as CT leftrightarrow MR and MR leftrightarrow PET translation, or mask-conditioned anatomically guided image generation.

Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals

Invasive brain-computer interfaces have garnered significant attention due to their high performance. The current intracranial stereoElectroEncephaloGraphy (sEEG) foundation models typically build univariate representations based on a single channel. Some of them further use Transformer to model the relationship among channels. However, due to the locality and specificity of brain computation, their performance on more difficult tasks, e.g., speech decoding, which demands intricate processing in specific brain regions, is yet to be fully investigated. We hypothesize that building multi-variate representations within certain brain regions can better capture the specific neural processing. To explore this hypothesis, we collect a well-annotated Chinese word-reading sEEG dataset, targeting language-related brain networks, over 12 subjects. Leveraging this benchmark dataset, we developed the Du-IN model that can extract contextual embeddings from specific brain regions through discrete codebook-guided mask modeling. Our model achieves SOTA performance on the downstream 61-word classification task, surpassing all baseline models. Model comparison and ablation analysis reveal that our design choices, including (i) multi-variate representation by fusing channels in vSMC and STG regions and (ii) self-supervision by discrete codebook-guided mask modeling, significantly contribute to these performances. Collectively, our approach, inspired by neuroscience findings, capitalizing on multi-variate neural representation from specific brain regions, is suitable for invasive brain modeling. It marks a promising neuro-inspired AI approach in BCI.

Visio-Linguistic Brain Encoding

Enabling effective brain-computer interfaces requires understanding how the human brain encodes stimuli across modalities such as visual, language (or text), etc. Brain encoding aims at constructing fMRI brain activity given a stimulus. There exists a plethora of neural encoding models which study brain encoding for single mode stimuli: visual (pretrained CNNs) or text (pretrained language models). Few recent papers have also obtained separate visual and text representation models and performed late-fusion using simple heuristics. However, previous work has failed to explore: (a) the effectiveness of image Transformer models for encoding visual stimuli, and (b) co-attentive multi-modal modeling for visual and text reasoning. In this paper, we systematically explore the efficacy of image Transformers (ViT, DEiT, and BEiT) and multi-modal Transformers (VisualBERT, LXMERT, and CLIP) for brain encoding. Extensive experiments on two popular datasets, BOLD5000 and Pereira, provide the following insights. (1) To the best of our knowledge, we are the first to investigate the effectiveness of image and multi-modal Transformers for brain encoding. (2) We find that VisualBERT, a multi-modal Transformer, significantly outperforms previously proposed single-mode CNNs, image Transformers as well as other previously proposed multi-modal models, thereby establishing new state-of-the-art. The supremacy of visio-linguistic models raises the question of whether the responses elicited in the visual regions are affected implicitly by linguistic processing even when passively viewing images. Future fMRI tasks can verify this computational insight in an appropriate experimental setting.

TrackRAD2025 challenge dataset: Real-time tumor tracking for MRI-guided radiotherapy

Purpose: Magnetic resonance imaging (MRI) to visualize anatomical motion is becoming increasingly important when treating cancer patients with radiotherapy. Hybrid MRI-linear accelerator (MRI-linac) systems allow real-time motion management during irradiation. This paper presents a multi-institutional real-time MRI time series dataset from different MRI-linac vendors. The dataset is designed to support developing and evaluating real-time tumor localization (tracking) algorithms for MRI-guided radiotherapy within the TrackRAD2025 challenge (https://trackrad2025.grand-challenge.org/). Acquisition and validation methods: The dataset consists of sagittal 2D cine MRIs in 585 patients from six centers (3 Dutch, 1 German, 1 Australian, and 1 Chinese). Tumors in the thorax, abdomen, and pelvis acquired on two commercially available MRI-linacs (0.35 T and 1.5 T) were included. For 108 cases, irradiation targets or tracking surrogates were manually segmented on each temporal frame. The dataset was randomly split into a public training set of 527 cases (477 unlabeled and 50 labeled) and a private testing set of 58 cases (all labeled). Data Format and Usage Notes: The data is publicly available under the TrackRAD2025 collection: https://doi.org/10.57967/hf/4539. Both the images and segmentations for each patient are available in metadata format. Potential Applications: This novel clinical dataset will enable the development and evaluation of real-time tumor localization algorithms for MRI-guided radiotherapy. By enabling more accurate motion management and adaptive treatment strategies, this dataset has the potential to advance the field of radiotherapy significantly.

A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert knowledge in text supervision

Foundation vision-language models are currently transforming computer vision, and are on the rise in medical imaging fueled by their very promising generalization capabilities. However, the initial attempts to transfer this new paradigm to medical imaging have shown less impressive performances than those observed in other domains, due to the significant domain shift and the complex, expert domain knowledge inherent to medical-imaging tasks. Motivated by the need for domain-expert foundation models, we present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding. To this end, we compiled 37 open-access, mostly categorical fundus imaging datasets from various sources, with up to 97 different target conditions and 284,660 images. We integrate the expert's domain knowledge in the form of descriptive textual prompts, during both pre-training and zero-shot inference, enhancing the less-informative categorical supervision of the data. Such a textual expert's knowledge, which we compiled from the relevant clinical literature and community standards, describes the fine-grained features of the pathologies as well as the hierarchies and dependencies between them. We report comprehensive evaluations, which illustrate the benefit of integrating expert knowledge and the strong generalization capabilities of FLAIR under difficult scenarios with domain shifts or unseen categories. When adapted with a lightweight linear probe, FLAIR outperforms fully-trained, dataset-focused models, more so in the few-shot regimes. Interestingly, FLAIR outperforms by a large margin more generalist, larger-scale image-language models, which emphasizes the potential of embedding experts' domain knowledge and the limitations of generalist models in medical imaging.

Cross-Shaped Windows Transformer with Self-supervised Pretraining for Clinically Significant Prostate Cancer Detection in Bi-parametric MRI

Multiparametric magnetic resonance imaging (mpMRI) has demonstrated promising results in prostate cancer (PCa) detection using deep convolutional neural networks (CNNs). Recently, transformers have achieved competitive performance compared to CNNs in computer vision. Large-scale transformers need abundant annotated data for training, which are difficult to obtain in medical imaging. Self-supervised learning can effectively leverage unlabeled data to extract useful semantic representations without annotation and its associated costs. This can improve model performance on downstream tasks with limited labelled data and increase generalizability. We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bi-parametric MR imaging (bpMRI) and demonstrate the effectiveness of our proposed self-supervised pre-training framework. Using a large prostate bpMRI dataset with 1500 patients, we first pre-train CSwin transformer using multi-task self-supervised learning to improve data-efficiency and network generalizability. We then finetuned using lesion annotations to perform csPCa detection. Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 AUC and 0.545 Average Precision (AP), significantly outperforming four state-of-the-art models (Swin UNETR, DynUNet, Attention UNet, UNet). Using a separate bpMRI dataset with 158 patients, we evaluated our model robustness to external hold-out data. Self-supervised CSwin UNet achieves 0.79 AUC and 0.45 AP, still outperforming all other comparable methods and demonstrating generalization to a dataset shift.

A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that primarily affects the aging population by impairing cognitive and motor functions. Early detection of AD through accessible methodologies like magnetic resonance imaging (MRI) is vital for developing effective interventions to halt or slow the disease's progression. This study aims to perform a comprehensive analysis of machine learning techniques for selecting MRI-based biomarkers and classifying individuals into healthy controls (HC) and unstable controls (uHC) who later show mild cognitive impairment within five years. The research utilizes MRI data from the Alzheimer's Disease Neuroinformatics Initiative (ADNI) and the Open Access Series of Imaging Studies 3 (OASIS-3), focusing on both HC and uHC participants. The study addresses the challenges of imbalanced data by testing classification methods on balanced and unbalanced datasets, and harmonizes data using polynomial regression to mitigate nuisance variables like age, gender, and intracranial volume. Results indicate that Gaussian Naive Bayes and RusBoost classifiers shows an optimal performance, achieving accuracies of up to 76.46% and 72.48% respectively on the ADNI dataset. For the OASIS-3 dataset, Kernel Naive Bayes and RusBoost yield accuracies ranging from 64.66% to 75.71%, improving further in age-matched datasets. Brain regions like the entorhinal cortex, hippocampus, lateral ventricle, and lateral orbitofrontal cortex are identified as significantly impacted during early cognitive decline. Despite limitations such as small sample sizes, the study's harmonization approach enhances the robustness of biomarker selection, suggesting the potential of this semi-automatic machine learning pipeline for early AD detection using MRI.

An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning

The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.

BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity

Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex.

ReconResNet: Regularised Residual Learning for MR Image Reconstruction of Undersampled Cartesian and Radial Data

MRI is an inherently slow process, which leads to long scan time for high-resolution imaging. The speed of acquisition can be increased by ignoring parts of the data (undersampling). Consequently, this leads to the degradation of image quality, such as loss of resolution or introduction of image artefacts. This work aims to reconstruct highly undersampled Cartesian or radial MR acquisitions, with better resolution and with less to no artefact compared to conventional techniques like compressed sensing. In recent times, deep learning has emerged as a very important area of research and has shown immense potential in solving inverse problems, e.g. MR image reconstruction. In this paper, a deep learning based MR image reconstruction framework is proposed, which includes a modified regularised version of ResNet as the network backbone to remove artefacts from the undersampled image, followed by data consistency steps that fusions the network output with the data already available from undersampled k-space in order to further improve reconstruction quality. The performance of this framework for various undersampling patterns has also been tested, and it has been observed that the framework is robust to deal with various sampling patterns, even when mixed together while training, and results in very high quality reconstruction, in terms of high SSIM (highest being 0.990pm0.006 for acceleration factor of 3.5), while being compared with the fully sampled reconstruction. It has been shown that the proposed framework can successfully reconstruct even for an acceleration factor of 20 for Cartesian (0.968pm0.005) and 17 for radially (0.962pm0.012) sampled data. Furthermore, it has been shown that the framework preserves brain pathology during reconstruction while being trained on healthy subjects.

MICDIR: Multi-scale Inverse-consistent Deformable Image Registration using UNetMSS with Self-Constructing Graph Latent

Image registration is the process of bringing different images into a common coordinate system - a technique widely used in various applications of computer vision, such as remote sensing, image retrieval, and, most commonly, medical imaging. Deep learning based techniques have been applied successfully to tackle various complex medical image processing problems, including medical image registration. Over the years, several image registration techniques have been proposed using deep learning. Deformable image registration techniques such as Voxelmorph have been successful in capturing finer changes and providing smoother deformations. However, Voxelmorph, as well as ICNet and FIRE, do not explicitly encode global dependencies (i.e. the overall anatomical view of the supplied image) and, therefore, cannot track large deformations. In order to tackle the aforementioned problems, this paper extends the Voxelmorph approach in three different ways. To improve the performance in case of small as well as large deformations, supervision of the model at different resolutions has been integrated using a multi-scale UNet. To support the network to learn and encode the minute structural co-relations of the given image-pairs, a self-constructing graph network (SCGNet) has been used as the latent of the multi-scale UNet - which can improve the learning process of the model and help the model to generalise better. And finally, to make the deformations inverse-consistent, cycle consistency loss has been employed. On the task of registration of brain MRIs, the proposed method achieved significant improvements over ANTs and VoxelMorph, obtaining a Dice score of 0.8013 \pm 0.0243 for intramodal and 0.6211 \pm 0.0309 for intermodal, while VoxelMorph achieved 0.7747 \pm 0.0260 and 0.6071 \pm 0.0510, respectively

End-To-End Prediction of Knee Osteoarthritis Progression With Multi-Modal Transformers

Knee Osteoarthritis (KOA) is a highly prevalent chronic musculoskeletal condition with no currently available treatment. The manifestation of KOA is heterogeneous and prediction of its progression is challenging. Current literature suggests that the use of multi-modal data and advanced modeling methods, such as the ones based on Deep Learning, has promise in tackling this challenge. To date, however, the evidence on the efficacy of this approach is limited. In this study, we leveraged recent advances in Deep Learning and, using a Transformer approach, developed a unified framework for the multi-modal fusion of knee imaging data. Subsequently, we analyzed its performance across a range of scenarios by investigating multiple progression horizons -- from short-term to long-term. We report our findings using a large cohort (n=2421-3967) derived from the Osteoarthritis Initiative dataset. We show that structural knee MRI allows identifying radiographic KOA progressors on par with multi-modal fusion approaches, achieving an area under the ROC curve (ROC AUC) of 0.70-0.76 and Average Precision (AP) of 0.15-0.54 in 2-8 year horizons. Progression within 1 year was better predicted with a multi-modal method using X-ray, structural, and compositional MR images -- ROC AUC of 0.76(0.04), AP of 0.13(0.04) -- or via clinical data. Our follow-up analysis generally shows that prediction from the imaging data is more accurate for post-traumatic subjects, and we further investigate which subject subgroups may benefit the most. The present study provides novel insights into multi-modal imaging of KOA and brings a unified data-driven framework for studying its progression in an end-to-end manner, providing new tools for the design of more efficient clinical trials. The source code of our framework and the pre-trained models are made publicly available.

The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023

Cardiac MRI, crucial for evaluating heart structure and function, faces limitations like slow imaging and motion artifacts. Undersampling reconstruction, especially data-driven algorithms, has emerged as a promising solution to accelerate scans and enhance imaging performance using highly under-sampled data. Nevertheless, the scarcity of publicly available cardiac k-space datasets and evaluation platform hinder the development of data-driven reconstruction algorithms. To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on MICCAI. CMRxRecon presented an extensive k-space dataset comprising cine and mapping raw data, accompanied by detailed annotations of cardiac anatomical structures. With overwhelming participation, the challenge attracted more than 285 teams and over 600 participants. Among them, 22 teams successfully submitted Docker containers for the testing phase, with 7 teams submitted for both cine and mapping tasks. All teams use deep learning based approaches, indicating that deep learning has predominately become a promising solution for the problem. The first-place winner of both tasks utilizes the E2E-VarNet architecture as backbones. In contrast, U-Net is still the most popular backbone for both multi-coil and single-coil reconstructions. This paper provides a comprehensive overview of the challenge design, presents a summary of the submitted results, reviews the employed methods, and offers an in-depth discussion that aims to inspire future advancements in cardiac MRI reconstruction models. The summary emphasizes the effective strategies observed in Cardiac MRI reconstruction, including backbone architecture, loss function, pre-processing techniques, physical modeling, and model complexity, thereby providing valuable insights for further developments in this field.

MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions

The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api .

Classification of BCI-EEG based on augmented covariance matrix

Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.

DISGAN: Wavelet-informed Discriminator Guides GAN to MRI Super-resolution with Noise Cleaning

MRI super-resolution (SR) and denoising tasks are fundamental challenges in the field of deep learning, which have traditionally been treated as distinct tasks with separate paired training data. In this paper, we propose an innovative method that addresses both tasks simultaneously using a single deep learning model, eliminating the need for explicitly paired noisy and clean images during training. Our proposed model is primarily trained for SR, but also exhibits remarkable noise-cleaning capabilities in the super-resolved images. Instead of conventional approaches that introduce frequency-related operations into the generative process, our novel approach involves the use of a GAN model guided by a frequency-informed discriminator. To achieve this, we harness the power of the 3D Discrete Wavelet Transform (DWT) operation as a frequency constraint within the GAN framework for the SR task on magnetic resonance imaging (MRI) data. Specifically, our contributions include: 1) a 3D generator based on residual-in-residual connected blocks; 2) the integration of the 3D DWT with 1times 1 convolution into a DWT+conv unit within a 3D Unet for the discriminator; 3) the use of the trained model for high-quality image SR, accompanied by an intrinsic denoising process. We dub the model "Denoising Induced Super-resolution GAN (DISGAN)" due to its dual effects of SR image generation and simultaneous denoising. Departing from the traditional approach of training SR and denoising tasks as separate models, our proposed DISGAN is trained only on the SR task, but also achieves exceptional performance in denoising. The model is trained on 3D MRI data from dozens of subjects from the Human Connectome Project (HCP) and further evaluated on previously unseen MRI data from subjects with brain tumours and epilepsy to assess its denoising and SR performance.

Contrastive learning of global and local features for medical image segmentation with limited annotations

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark. The code is made public at https://github.com/krishnabits001/domain_specific_cl.

Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with Semi-Supervised and Self-Supervised Learning

Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, supervised DL methods depend on extensive amounts of fully-sampled (labeled) data and are sensitive to out-of-distribution (OOD) shifts, particularly low signal-to-noise ratio (SNR) acquisitions. To alleviate this challenge, we propose Noise2Recon, a model-agnostic, consistency training method for joint MRI reconstruction and denoising that can use both fully-sampled (labeled) and undersampled (unlabeled) scans in semi-supervised and self-supervised settings. With limited or no labeled training data, Noise2Recon outperforms compressed sensing and deep learning baselines, including supervised networks, augmentation-based training, fine-tuned denoisers, and self-supervised methods, and matches performance of supervised models, which were trained with 14x more fully-sampled scans. Noise2Recon also outperforms all baselines, including state-of-the-art fine-tuning and augmentation techniques, among low-SNR scans and when generalizing to other OOD factors, such as changes in acceleration factors and different datasets. Augmentation extent and loss weighting hyperparameters had negligible impact on Noise2Recon compared to supervised methods, which may indicate increased training stability. Our code is available at https://github.com/ad12/meddlr.

Symbrain: A large-scale dataset of MRI images for neonatal brain symmetry analysis

This paper presents an annotated dataset of brain MRI images designed to advance the field of brain symmetry study. Magnetic resonance imaging (MRI) has gained interest in analyzing brain symmetry in neonatal infants, and challenges remain due to the vast size differences between fetal and adult brains. Classification methods for brain structural MRI use scales and visual cues to assess hemisphere symmetry, which can help diagnose neonatal patients by comparing hemispheres and anatomical regions of interest in the brain. Using the Developing Human Connectome Project dataset, this work presents a dataset comprising cerebral images extracted as slices across selected portions of interest for clinical evaluation . All the extracted images are annotated with the brain's midline. All the extracted images are annotated with the brain's midline. From the assumption that a decrease in symmetry is directly related to possible clinical pathologies, the dataset can contribute to a more precise diagnosis because it can be used to train deep learning model application in neonatal cerebral MRI anomaly detection from postnatal infant scans thanks to computer vision. Such models learn to identify and classify anomalies by identifying potential asymmetrical patterns in medical MRI images. Furthermore, this dataset can contribute to the research and development of methods using the relative symmetry of the two brain hemispheres for crucial diagnosis and treatment planning.

Anatomical Foundation Models for Brain MRIs

Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.

Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis

Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textbf{Mamba} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.

One-hot Generalized Linear Model for Switching Brain State Discovery

Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits. Inferred neural interactions from neural signals primarily reflect functional interactions. In a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional interactions can change over time. To model dynamically changing functional interactions, prior work employs state-switching generalized linear models with hidden Markov models (i.e., HMM-GLMs). However, we argue they lack biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome. Here, we propose a novel prior-informed state-switching GLM. We introduce both a Gaussian prior and a one-hot prior over the GLM in each state. The priors are learnable. We will show that the learned prior should capture the state-constant interaction, shedding light on the underlying anatomical connectome and revealing more likely physical neuron interactions. The state-dependent interaction modeled by each GLM offers traceability to capture functional variations across multiple brain states. Our methods effectively recover true interaction structures in simulated data, achieve the highest predictive likelihood with real neural datasets, and render interaction structures and hidden states more interpretable when applied to real neural data.

Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging

This study presents Latent Diffusion Autoencoder (LDAE), a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging, focusing on Alzheimer disease (AD) using brain MR from the ADNI database as a case study. Unlike conventional diffusion autoencoders operating in image space, LDAE applies the diffusion process in a compressed latent representation, improving computational efficiency and making 3D medical imaging representation learning tractable. To validate the proposed approach, we explore two key hypotheses: (i) LDAE effectively captures meaningful semantic representations on 3D brain MR associated with AD and ageing, and (ii) LDAE achieves high-quality image generation and reconstruction while being computationally efficient. Experimental results support both hypotheses: (i) linear-probe evaluations demonstrate promising diagnostic performance for AD (ROC-AUC: 90%, ACC: 84%) and age prediction (MAE: 4.1 years, RMSE: 5.2 years); (ii) the learned semantic representations enable attribute manipulation, yielding anatomically plausible modifications; (iii) semantic interpolation experiments show strong reconstruction of missing scans, with SSIM of 0.969 (MSE: 0.0019) for a 6-month gap. Even for longer gaps (24 months), the model maintains robust performance (SSIM > 0.93, MSE < 0.004), indicating an ability to capture temporal progression trends; (iv) compared to conventional diffusion autoencoders, LDAE significantly increases inference throughput (20x faster) while also enhancing reconstruction quality. These findings position LDAE as a promising framework for scalable medical imaging applications, with the potential to serve as a foundation model for medical image analysis. Code available at https://github.com/GabrieleLozupone/LDAE

Sinogram upsampling using Primal-Dual UNet for undersampled CT and radial MRI reconstruction

Computed tomography and magnetic resonance imaging are two widely used clinical imaging modalities for non-invasive diagnosis. However, both of these modalities come with certain problems. CT uses harmful ionising radiation, and MRI suffers from slow acquisition speed. Both problems can be tackled by undersampling, such as sparse sampling. However, such undersampled data leads to lower resolution and introduces artefacts. Several techniques, including deep learning based methods, have been proposed to reconstruct such data. However, the undersampled reconstruction problem for these two modalities was always considered as two different problems and tackled separately by different research works. This paper proposes a unified solution for both sparse CT and undersampled radial MRI reconstruction, achieved by applying Fourier transform-based pre-processing on the radial MRI and then finally reconstructing both modalities using sinogram upsampling combined with filtered back-projection. The Primal-Dual network is a deep learning based method for reconstructing sparsely-sampled CT data. This paper introduces Primal-Dual UNet, which improves the Primal-Dual network in terms of accuracy and reconstruction speed. The proposed method resulted in an average SSIM of 0.932\textpm0.021 while performing sparse CT reconstruction for fan-beam geometry with a sparsity level of 16, achieving a statistically significant improvement over the previous model, which resulted in 0.919\textpm0.016. Furthermore, the proposed model resulted in 0.903\textpm0.019 and 0.957\textpm0.023 average SSIM while reconstructing undersampled brain and abdominal MRI data with an acceleration factor of 16, respectively - statistically significant improvements over the original model, which resulted in 0.867\textpm0.025 and 0.949\textpm0.025.

Classification of Brain Tumours in MR Images using Deep Spatiospatial Models

A brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning and magnetic resonance imaging is the principal imaging modality for diagnostic of brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models on, and the improvements in the model architectures yielding better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating the slice spatial dimension separately, spatiotemporal models can be employed as spatiospatial models for this task. These models have the capabilities of learning specific spatial and temporal relationship, while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.93 and a test accuracy of 96.98\%, while at the same time being the model with the least computational cost.

Reconstructing unseen modalities and pathology with an efficient Recurrent Inference Machine

Objective: To allow efficient learning using the Recurrent Inference Machine (RIM) for image reconstruction whereas not being strictly dependent on the training data distribution so that unseen modalities and pathologies are still accurately recovered. Methods: Theoretically, the RIM learns to solve the inverse problem of accelerated-MRI reconstruction whereas being robust to variable imaging conditions. The efficiency and generalization capabilities with different training datasets were studied, as well as recurrent network units with decreasing complexity: the Gated Recurrent Unit (GRU), the Minimal Gated Unit (MGU), and the Independently Recurrent Neural Network (IndRNN), to reduce inference times. Validation was performed against Compressed Sensing (CS) and further assessed based on data unseen during training. A pathology study was conducted by reconstructing simulated white matter lesions and prospectively undersampled data of a Multiple Sclerosis patient. Results: Training on a single modality of 3T T_1-weighted brain data appeared sufficient to also reconstruct 7T T_{2}^*-weighted brain and 3T T_2-weighted knee data. The IndRNN is an efficient recurrent unit, reducing inference time by 68\% compared to CS, whereas maintaining performance. The RIM was able to reconstruct lesions unseen during training more accurately than CS when trained on T_2-weighted knee data. Training on T_1-weighted brain data and on combined data slightly enhanced the signal compared to CS. Conclusion: The RIM is efficient when decreasing its complexity, which reduces the inference time, whereas still being able to reconstruct data and pathology that was unseen during training.

SynthStrip: Skull-Stripping for Any Brain Image

The removal of non-brain signal from magnetic resonance imaging (MRI) data, known as skull-stripping, is an integral component of many neuroimage analysis streams. Despite their abundance, popular classical skull-stripping methods are usually tailored to images with specific acquisition properties, namely near-isotropic resolution and T1-weighted (T1w) MRI contrast, which are prevalent in research settings. As a result, existing tools tend to adapt poorly to other image types, such as stacks of thick slices acquired with fast spin-echo (FSE) MRI that are common in the clinic. While learning-based approaches for brain extraction have gained traction in recent years, these methods face a similar burden, as they are only effective for image types seen during the training procedure. To achieve robust skull-stripping across a landscape of imaging protocols, we introduce SynthStrip, a rapid, learning-based brain-extraction tool. By leveraging anatomical segmentations to generate an entirely synthetic training dataset with anatomies, intensity distributions, and artifacts that far exceed the realistic range of medical images, SynthStrip learns to successfully generalize to a variety of real acquired brain images, removing the need for training data with target contrasts. We demonstrate the efficacy of SynthStrip for a diverse set of image acquisitions and resolutions across subject populations, ranging from newborn to adult. We show substantial improvements in accuracy over popular skull-stripping baselines -- all with a single trained model. Our method and labeled evaluation data are available at https://w3id.org/synthstrip.

SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation

Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results in high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods. The code is available at https://github.com/ubc-tea/SADM-Longitudinal-Medical-Image-Generation.

Robust Depth Linear Error Decomposition with Double Total Variation and Nuclear Norm for Dynamic MRI Reconstruction

Compressed Sensing (CS) significantly speeds up Magnetic Resonance Image (MRI) processing and achieves accurate MRI reconstruction from under-sampled k-space data. According to the current research, there are still several problems with dynamic MRI k-space reconstruction based on CS. 1) There are differences between the Fourier domain and the Image domain, and the differences between MRI processing of different domains need to be considered. 2) As three-dimensional data, dynamic MRI has its spatial-temporal characteristics, which need to calculate the difference and consistency of surface textures while preserving structural integrity and uniqueness. 3) Dynamic MRI reconstruction is time-consuming and computationally resource-dependent. In this paper, we propose a novel robust low-rank dynamic MRI reconstruction optimization model via highly under-sampled and Discrete Fourier Transform (DFT) called the Robust Depth Linear Error Decomposition Model (RDLEDM). Our method mainly includes linear decomposition, double Total Variation (TV), and double Nuclear Norm (NN) regularizations. By adding linear image domain error analysis, the noise is reduced after under-sampled and DFT processing, and the anti-interference ability of the algorithm is enhanced. Double TV and NN regularizations can utilize both spatial-temporal characteristics and explore the complementary relationship between different dimensions in dynamic MRI sequences. In addition, Due to the non-smoothness and non-convexity of TV and NN terms, it is difficult to optimize the unified objective model. To address this issue, we utilize a fast algorithm by solving a primal-dual form of the original problem. Compared with five state-of-the-art methods, extensive experiments on dynamic MRI data demonstrate the superior performance of the proposed method in terms of both reconstruction accuracy and time complexity.

Generating Synthetic Computed Tomography for Radiotherapy: SynthRAD2023 Challenge Report

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: 1) MRI-to-CT and 2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (>0.87/0.90) and gamma pass rates for photon (>98.1%/99.0%) and proton (>99.0%/97.3%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy.

Neuro-Vision to Language: Enhancing Visual Reconstruction and Language Interaction through Brain Recordings

Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition but faces challenges due to individual differences and complex neural signal representations. Traditional methods often require customized models and extensive trials, lacking interpretability in visual reconstruction tasks. Our framework integrates 3D brain structures with visual semantics using a Vision Transformer 3D. This unified feature extractor efficiently aligns fMRI features with multiple levels of visual embeddings, eliminating the need for subject-specific models and allowing extraction from single-trial data. The extractor consolidates multi-level visual features into one network, simplifying integration with Large Language Models (LLMs). Additionally, we have enhanced the fMRI dataset with diverse fMRI-image-related textual data to support multimodal large model development. Integrating with LLMs enhances decoding capabilities, enabling tasks such as brain captioning, complex reasoning, concept localization, and visual reconstruction. Our approach demonstrates superior performance across these tasks, precisely identifying language-based concepts within brain signals, enhancing interpretability, and providing deeper insights into neural processes. These advances significantly broaden the applicability of non-invasive brain decoding in neuroscience and human-computer interaction, setting the stage for advanced brain-computer interfaces and cognitive models.

Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images

Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.

LaVCa: LLM-assisted Visual Cortex Captioning

Understanding the property of neural populations (or voxels) in the human brain can advance our comprehension of human perceptual and cognitive processing capabilities and contribute to developing brain-inspired computer models. Recent encoding models using deep neural networks (DNNs) have successfully predicted voxel-wise activity. However, interpreting the properties that explain voxel responses remains challenging because of the black-box nature of DNNs. As a solution, we propose LLM-assisted Visual Cortex Captioning (LaVCa), a data-driven approach that uses large language models (LLMs) to generate natural-language captions for images to which voxels are selective. By applying LaVCa for image-evoked brain activity, we demonstrate that LaVCa generates captions that describe voxel selectivity more accurately than the previously proposed method. Furthermore, the captions generated by LaVCa quantitatively capture more detailed properties than the existing method at both the inter-voxel and intra-voxel levels. Furthermore, a more detailed analysis of the voxel-specific properties generated by LaVCa reveals fine-grained functional differentiation within regions of interest (ROIs) in the visual cortex and voxels that simultaneously represent multiple distinct concepts. These findings offer profound insights into human visual representations by assigning detailed captions throughout the visual cortex while highlighting the potential of LLM-based methods in understanding brain representations. Please check out our webpage at https://sites.google.com/view/lavca-llm/

BlindHarmony: "Blind" Harmonization for MR Images via Flow model

In MRI, images of the same contrast (e.g., T_1) from the same subject can exhibit noticeable differences when acquired using different hardware, sequences, or scan parameters. These differences in images create a domain gap that needs to be bridged by a step called image harmonization, to process the images successfully using conventional or deep learning-based image analysis (e.g., segmentation). Several methods, including deep learning-based approaches, have been proposed to achieve image harmonization. However, they often require datasets from multiple domains for deep learning training and may still be unsuccessful when applied to images from unseen domains. To address this limitation, we propose a novel concept called `Blind Harmonization', which utilizes only target domain data for training but still has the capability to harmonize images from unseen domains. For the implementation of blind harmonization, we developed BlindHarmony using an unconditional flow model trained on target domain data. The harmonized image is optimized to have a correlation with the input source domain image while ensuring that the latent vector of the flow model is close to the center of the Gaussian distribution. BlindHarmony was evaluated on both simulated and real datasets and compared to conventional methods. BlindHarmony demonstrated noticeable performance on both datasets, highlighting its potential for future use in clinical settings. The source code is available at: https://github.com/SNU-LIST/BlindHarmony

ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images

Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.

3D-QCNet -- A Pipeline for Automated Artifact Detection in Diffusion MRI images

Artifacts are a common occurrence in Diffusion MRI (dMRI) scans. Identifying and removing them is essential to ensure the accuracy and viability of any post processing carried out on these scans. This makes QC (quality control) a crucial first step prior to any analysis of dMRI data. Several QC methods for artifact detection exist, however they suffer from problems like requiring manual intervention and the inability to generalize across different artifacts and datasets. In this paper, we propose an automated deep learning (DL) pipeline that utilizes a 3D-Densenet architecture to train a model on diffusion volumes for automatic artifact detection. Our method is applied on a vast dataset consisting of 9000 volumes sourced from 7 large clinical datasets. These datasets comprise scans from multiple scanners with different gradient directions, high and low b values, single shell and multi shell acquisitions. Additionally, they represent diverse subject demographics like the presence or absence of pathologies. Our QC method is found to accurately generalize across this heterogenous data by correctly detecting 92% artifacts on average across our test set. This consistent performance over diverse datasets underlines the generalizability of our method, which currently is a significant barrier hindering the widespread adoption of automated QC techniques. For these reasons, we believe that 3D-QCNet can be integrated in diffusion pipelines to effectively automate the arduous and time-intensive process of artifact detection.

Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion

How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of fMRI-based visual decoding and reconstruction. However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for EEG-based visual reconstruction. In this study, we present an EEG-based visual reconstruction framework. It consists of a plug-and-play EEG encoder called the Adaptive Thinking Mapper (ATM), which is aligned with image embeddings, and a two-stage EEG guidance image generator that first transforms EEG features into image priors and then reconstructs the visual stimuli with a pre-trained image generator. Our approach allows EEG embeddings to achieve superior performance in image classification and retrieval tasks. Our two-stage image generation strategy vividly reconstructs images seen by humans. Furthermore, we analyzed the impact of signals from different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data modality. We report that EEG-based visual decoding achieves SOTA performance, highlighting the portability, low cost, and high temporal resolution of EEG, enabling a wide range of BCI applications. The code of ATM is available at https://github.com/dongyangli-del/EEG_Image_decode.

Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease Classification with Incomplete Data

Accurate medical classification requires a large number of multi-modal data, and in many cases, different feature types. Previous studies have shown promising results when using multi-modal data, outperforming single-modality models when classifying diseases such as Alzheimer's Disease (AD). However, those models are usually not flexible enough to handle missing modalities. Currently, the most common workaround is discarding samples with missing modalities which leads to considerable data under-utilization. Adding to the fact that labeled medical images are already scarce, the performance of data-driven methods like deep learning can be severely hampered. Therefore, a multi-modal method that can handle missing data in various clinical settings is highly desirable. In this paper, we present Multi-Modal Mixing Transformer (3MAT), a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios. In this work, we test 3MT for AD and Cognitively normal (CN) classification and mild cognitive impairment (MCI) conversion prediction to progressive MCI (pMCI) or stable MCI (sMCI) using clinical and neuroimaging data. The model uses a novel Cascaded Modality Transformer architecture with cross-attention to incorporate multi-modal information for more informed predictions. We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios. The result is a versatile network that enables the mixing of arbitrary numbers of modalities with different feature types and also ensures full data utilization missing data scenarios. The model is trained and evaluated on the ADNI dataset with the SOTRA performance and further evaluated with the AIBL dataset with missing data.

ISLES 2024: The first longitudinal multimodal multi-center real-world dataset in (sub-)acute stroke

Stroke remains a leading cause of global morbidity and mortality, placing a heavy socioeconomic burden. Over the past decade, advances in endovascular reperfusion therapy and the use of CT and MRI imaging for treatment guidance have significantly improved patient outcomes and are now standard in clinical practice. To develop machine learning algorithms that can extract meaningful and reproducible models of brain function for both clinical and research purposes from stroke images - particularly for lesion identification, brain health quantification, and prognosis - large, diverse, and well-annotated public datasets are essential. While only a few datasets with (sub-)acute stroke data were previously available, several large, high-quality datasets have recently been made publicly accessible. However, these existing datasets include only MRI data. In contrast, our dataset is the first to offer comprehensive longitudinal stroke data, including acute CT imaging with angiography and perfusion, follow-up MRI at 2-9 days, as well as acute and longitudinal clinical data up to a three-month outcome. The dataset includes a training dataset of n = 150 and a test dataset of n = 100 scans. Training data is publicly available, while test data will be used exclusively for model validation. We are making this dataset available as part of the 2024 edition of the Ischemic Stroke Lesion Segmentation (ISLES) challenge (https://www.isles-challenge.org/), which continuously aims to establish benchmark methods for acute and sub-acute ischemic stroke lesion segmentation, aiding in creating open stroke imaging datasets and evaluating cutting-edge image processing algorithms.

MemControl: Mitigating Memorization in Diffusion Models via Automated Parameter Selection

Diffusion models excel in generating images that closely resemble their training data but are also susceptible to data memorization, raising privacy, ethical, and legal concerns, particularly in sensitive domains such as medical imaging. We hypothesize that this memorization stems from the overparameterization of deep models and propose that regularizing model capacity during fine-tuning can mitigate this issue. Firstly, we empirically show that regulating the model capacity via Parameter-efficient fine-tuning (PEFT) mitigates memorization to some extent, however, it further requires the identification of the exact parameter subsets to be fine-tuned for high-quality generation. To identify these subsets, we introduce a bi-level optimization framework, MemControl, that automates parameter selection using memorization and generation quality metrics as rewards during fine-tuning. The parameter subsets discovered through MemControl achieve a superior tradeoff between generation quality and memorization. For the task of medical image generation, our approach outperforms existing state-of-the-art memorization mitigation strategies by fine-tuning as few as 0.019% of model parameters. Moreover, we demonstrate that the discovered parameter subsets are transferable to non-medical domains. Our framework is scalable to large datasets, agnostic to reward functions, and can be integrated with existing approaches for further memorization mitigation. To the best of our knowledge, this is the first study to empirically evaluate memorization in medical images and propose a targeted yet universal mitigation strategy. The code is available at https://github.com/Raman1121/Diffusion_Memorization_HPO.

HappyFeat -- An interactive and efficient BCI framework for clinical applications

Brain-Computer Interface (BCI) systems allow users to perform actions by translating their brain activity into commands. Such systems usually need a training phase, consisting in training a classification algorithm to discriminate between mental states using specific features from the recorded signals. This phase of feature selection and training is crucial for BCI performance and presents specific constraints to be met in a clinical context, such as post-stroke rehabilitation. In this paper, we present HappyFeat, a software making Motor Imagery (MI) based BCI experiments easier, by gathering all necessary manipulations and analysis in a single convenient GUI and via automation of experiment or analysis parameters. The resulting workflow allows for effortlessly selecting the best features, helping to achieve good BCI performance in time-constrained environments. Alternative features based on Functional Connectivity can be used and compared or combined with Power Spectral Density, allowing a network-oriented approach. We then give details of HappyFeat's main mechanisms, and a review of its performances in typical use cases. We also show that it can be used as an efficient tool for comparing different metrics extracted from the signals, to train the classification algorithm. To this end, we show a comparison between the commonly-used Power Spectral Density and network metrics based on Functional Connectivity. HappyFeat is available as an open-source project which can be freely downloaded on GitHub.

Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets

Lack of large expert annotated MR datasets makes training deep learning models difficult. Therefore, a cross-modality (MR-CT) deep learning segmentation approach that augments training data using pseudo MR images produced by transforming expert-segmented CT images was developed. Eighty-One T2-weighted MRI scans from 28 patients with non-small cell lung cancers were analyzed. Cross-modality prior encoding the transformation of CT to pseudo MR images resembling T2w MRI was learned as a generative adversarial deep learning model. This model augmented training data arising from 6 expert-segmented T2w MR patient scans with 377 pseudo MRI from non-small cell lung cancer CT patient scans with obtained from the Cancer Imaging Archive. A two-dimensional Unet implemented with batch normalization was trained to segment the tumors from T2w MRI. This method was benchmarked against (a) standard data augmentation and two state-of-the art cross-modality pseudo MR-based augmentation and (b) two segmentation networks. Segmentation accuracy was computed using Dice similarity coefficient (DSC), Hausdroff distance metrics, and volume ratio. The proposed approach produced the lowest statistical variability in the intensity distribution between pseudo and T2w MR images measured as Kullback-Leibler divergence of 0.069. This method produced the highest segmentation accuracy with a DSC of 0.75 and the lowest Hausdroff distance on the test dataset. This approach produced highly similar estimations of tumor growth as an expert (P = 0.37). A novel deep learning MR segmentation was developed that overcomes the limitation of learning robust models from small datasets by leveraging learned cross-modality priors to augment training. The results show the feasibility of the approach and the corresponding improvement over the state-of-the-art methods.

A for-loop is all you need. For solving the inverse problem in the case of personalized tumor growth modeling

Solving the inverse problem is the key step in evaluating the capacity of a physical model to describe real phenomena. In medical image computing, it aligns with the classical theme of image-based model personalization. Traditionally, a solution to the problem is obtained by performing either sampling or variational inference based methods. Both approaches aim to identify a set of free physical model parameters that results in a simulation best matching an empirical observation. When applied to brain tumor modeling, one of the instances of image-based model personalization in medical image computing, the overarching drawback of the methods is the time complexity for finding such a set. In a clinical setting with limited time between imaging and diagnosis or even intervention, this time complexity may prove critical. As the history of quantitative science is the history of compression, we align in this paper with the historical tendency and propose a method compressing complex traditional strategies for solving an inverse problem into a simple database query task. We evaluated different ways of performing the database query task assessing the trade-off between accuracy and execution time. On the exemplary task of brain tumor growth modeling, we prove that the proposed method achieves one order speed-up compared to existing approaches for solving the inverse problem. The resulting compute time offers critical means for relying on more complex and, hence, realistic models, for integrating image preprocessing and inverse modeling even deeper, or for implementing the current model into a clinical workflow.