Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePractical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on https://github.com/bjzhb666/GS-LoRA.
FRoundation: Are Foundation Models Ready for Face Recognition?
Foundation models are predominantly trained in an unsupervised or self-supervised manner on highly diverse and large-scale datasets, making them broadly applicable to various downstream tasks. In this work, we investigate for the first time whether such models are suitable for the specific domain of face recognition. We further propose and demonstrate the adaptation of these models for face recognition across different levels of data availability. Extensive experiments are conducted on multiple foundation models and datasets of varying scales for training and fine-tuning, with evaluation on a wide range of benchmarks. Our results indicate that, despite their versatility, pre-trained foundation models underperform in face recognition compared to similar architectures trained specifically for this task. However, fine-tuning foundation models yields promising results, often surpassing models trained from scratch when training data is limited. Even with access to large-scale face recognition training datasets, fine-tuned foundation models perform comparably to models trained from scratch, but with lower training computational costs and without relying on the assumption of extensive data availability. Our analysis also explores bias in face recognition, with slightly higher bias observed in some settings when using foundation models.
KeyPoint Relative Position Encoding for Face Recognition
In this paper, we address the challenge of making ViT models more robust to unseen affine transformations. Such robustness becomes useful in various recognition tasks such as face recognition when image alignment failures occur. We propose a novel method called KP-RPE, which leverages key points (e.g.~facial landmarks) to make ViT more resilient to scale, translation, and pose variations. We begin with the observation that Relative Position Encoding (RPE) is a good way to bring affine transform generalization to ViTs. RPE, however, can only inject the model with prior knowledge that nearby pixels are more important than far pixels. Keypoint RPE (KP-RPE) is an extension of this principle, where the significance of pixels is not solely dictated by their proximity but also by their relative positions to specific keypoints within the image. By anchoring the significance of pixels around keypoints, the model can more effectively retain spatial relationships, even when those relationships are disrupted by affine transformations. We show the merit of KP-RPE in face and gait recognition. The experimental results demonstrate the effectiveness in improving face recognition performance from low-quality images, particularly where alignment is prone to failure. Code and pre-trained models are available.
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
PETALface: Parameter Efficient Transfer Learning for Low-resolution Face Recognition
Pre-training on large-scale datasets and utilizing margin-based loss functions have been highly successful in training models for high-resolution face recognition. However, these models struggle with low-resolution face datasets, in which the faces lack the facial attributes necessary for distinguishing different faces. Full fine-tuning on low-resolution datasets, a naive method for adapting the model, yields inferior performance due to catastrophic forgetting of pre-trained knowledge. Additionally the domain difference between high-resolution (HR) gallery images and low-resolution (LR) probe images in low resolution datasets leads to poor convergence for a single model to adapt to both gallery and probe after fine-tuning. To this end, we propose PETALface, a Parameter-Efficient Transfer Learning approach for low-resolution face recognition. Through PETALface, we attempt to solve both the aforementioned problems. (1) We solve catastrophic forgetting by leveraging the power of parameter efficient fine-tuning(PEFT). (2) We introduce two low-rank adaptation modules to the backbone, with weights adjusted based on the input image quality to account for the difference in quality for the gallery and probe images. To the best of our knowledge, PETALface is the first work leveraging the powers of PEFT for low resolution face recognition. Extensive experiments demonstrate that the proposed method outperforms full fine-tuning on low-resolution datasets while preserving performance on high-resolution and mixed-quality datasets, all while using only 0.48% of the parameters. Code: https://kartik-3004.github.io/PETALface/
A Large Dataset of Spontaneous Speech with the Accent Spoken in São Paulo for Automatic Speech Recognition Evaluation
We present a freely available spontaneous speech corpus for the Brazilian Portuguese language and report preliminary automatic speech recognition (ASR) results, using both the Wav2Vec2-XLSR-53 and Distil-Whisper models fine-tuned and trained on our corpus. The NURC-SP Audio Corpus comprises 401 different speakers (204 females, 197 males) with a total of 239.30 hours of transcribed audio recordings. To the best of our knowledge, this is the first large Paulistano accented spontaneous speech corpus dedicated to the ASR task in Portuguese. We first present the design and development procedures of the NURC-SP Audio Corpus, and then describe four ASR experiments in detail. The experiments demonstrated promising results for the applicability of the corpus for ASR. Specifically, we fine-tuned two versions of Wav2Vec2-XLSR-53 model, trained a Distil-Whisper model using our dataset with labels determined by Whisper Large-V3 model, and fine-tuned this Distil-Whisper model with our corpus. Our best results were the Distil-Whisper fine-tuned over NURC-SP Audio Corpus with a WER of 24.22% followed by a fine-tuned versions of Wav2Vec2-XLSR-53 model with a WER of 33.73%, that is almost 10% point worse than Distil-Whisper's. To enable experiment reproducibility, we share the NURC-SP Audio Corpus dataset, pre-trained models, and training recipes in Hugging-Face and Github repositories.
Masked Face Dataset Generation and Masked Face Recognition
In the post-pandemic era, wearing face masks has posed great challenge to the ordinary face recognition. In the previous study, researchers has applied pretrained VGG16, and ResNet50 to extract features on the elaborate curated existing masked face recognition (MFR) datasets, RMFRD and SMFRD. To make the model more adaptable to the real world situation where the sample size is smaller and the camera environment has greater changes, we created a more challenging masked face dataset ourselves, by selecting 50 identities with 1702 images from Labelled Faces in the Wild (LFW) Dataset, and simulated face masks through key point detection. The another part of our study is to solve the masked face recognition problem, and we chose models by referring to the former state of the art results, instead of directly using pretrained models, we fine tuned the model on our new dataset and use the last linear layer to do the classification directly. Furthermore, we proposed using data augmentation strategy to further increase the test accuracy, and fine tuned a new networks beyond the former study, one of the most SOTA networks, Inception ResNet v1. The best test accuracy on 50 identity MFR has achieved 95%.
The Power of Transfer Learning in Agricultural Applications: AgriNet
Advances in deep learning and transfer learning have paved the way for various automation classification tasks in agriculture, including plant diseases, pests, weeds, and plant species detection. However, agriculture automation still faces various challenges, such as the limited size of datasets and the absence of plant-domain-specific pretrained models. Domain specific pretrained models have shown state of art performance in various computer vision tasks including face recognition and medical imaging diagnosis. In this paper, we propose AgriNet dataset, a collection of 160k agricultural images from more than 19 geographical locations, several images captioning devices, and more than 423 classes of plant species and diseases. We also introduce AgriNet models, a set of pretrained models on five ImageNet architectures: VGG16, VGG19, Inception-v3, InceptionResNet-v2, and Xception. AgriNet-VGG19 achieved the highest classification accuracy of 94 % and the highest F1-score of 92%. Additionally, all proposed models were found to accurately classify the 423 classes of plant species, diseases, pests, and weeds with a minimum accuracy of 87% for the Inception-v3 model.Finally, experiments to evaluate of superiority of AgriNet models compared to ImageNet models were conducted on two external datasets: pest and plant diseases dataset from Bangladesh and a plant diseases dataset from Kashmir.
A general language model for peptide identification
Advances in peptide identification are revolutionizing our ability to decipher protein functions and accelerate therapeutic discovery. We present PDeepPP, a deep learning framework that integrates pretrained protein language models with parallel transformer-CNN architectures, achieving state-of-the-art performance in peptide characterization tasks. The model's hybrid architecture demonstrates unique capabilities in capturing both local sequence motifs and global structural features, as evidenced by 29% improved cluster separation in UMAP visualizations compared to conventional approaches. Evaluated across 33 biological recognition tasks - including post-translational modification site prediction and bioactive peptide identification - PDeepPP outperformed existing methods in 25 tasks with average AUC improvements of 4.2%. Notably, it achieved 0.9726 accuracy with PR AUC 0.9977 in antimicrobial peptide detection while reducing false negatives by 37.5% in antimalarial recognition scenarios. This framework enables accurate large-scale peptide analysis, achieving 218* acceleration over sequence-alignment-based methods while maintaining 99.5% specificity in critical glycosylation site detection.PDeepPP establishes a new paradigm for computational peptide analysis through its synergistic architecture design, enabling rapid yet precise functional annotation that bridges molecular pattern recognition with translational biomedical applications.We have made our implementation, including code, data, and pretrained models, publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP).
FaceNet: A Unified Embedding for Face Recognition and Clustering
Despite significant recent advances in the field of face recognition, implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-art face recognition performance using only 128-bytes per face. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result by 30% on both datasets. We also introduce the concept of harmonic embeddings, and a harmonic triplet loss, which describe different versions of face embeddings (produced by different networks) that are compatible to each other and allow for direct comparison between each other.
Active Self-Paced Learning for Cost-Effective and Progressive Face Identification
This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert re-certification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, and demonstrate very promising results. (http://hcp.sysu.edu.cn/projects/aspl/)
VGGFace2: A dataset for recognising faces across pose and age
In this paper, we introduce a new large-scale face dataset named VGGFace2. The dataset contains 3.31 million images of 9131 subjects, with an average of 362.6 images for each subject. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession (e.g. actors, athletes, politicians). The dataset was collected with three goals in mind: (i) to have both a large number of identities and also a large number of images for each identity; (ii) to cover a large range of pose, age and ethnicity; and (iii) to minimize the label noise. We describe how the dataset was collected, in particular the automated and manual filtering stages to ensure a high accuracy for the images of each identity. To assess face recognition performance using the new dataset, we train ResNet-50 (with and without Squeeze-and-Excitation blocks) Convolutional Neural Networks on VGGFace2, on MS- Celeb-1M, and on their union, and show that training on VGGFace2 leads to improved recognition performance over pose and age. Finally, using the models trained on these datasets, we demonstrate state-of-the-art performance on all the IARPA Janus face recognition benchmarks, e.g. IJB-A, IJB-B and IJB-C, exceeding the previous state-of-the-art by a large margin. Datasets and models are publicly available.
WIDER FACE: A Face Detection Benchmark
Face detection is one of the most studied topics in the computer vision community. Much of the progresses have been made by the availability of face detection benchmark datasets. We show that there is a gap between current face detection performance and the real world requirements. To facilitate future face detection research, we introduce the WIDER FACE dataset, which is 10 times larger than existing datasets. The dataset contains rich annotations, including occlusions, poses, event categories, and face bounding boxes. Faces in the proposed dataset are extremely challenging due to large variations in scale, pose and occlusion, as shown in Fig. 1. Furthermore, we show that WIDER FACE dataset is an effective training source for face detection. We benchmark several representative detection systems, providing an overview of state-of-the-art performance and propose a solution to deal with large scale variation. Finally, we discuss common failure cases that worth to be further investigated. Dataset can be downloaded at: mmlab.ie.cuhk.edu.hk/projects/WIDERFace
Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors
This paper studies how to synthesize face images of non-existent persons, to create a dataset that allows effective training of face recognition (FR) models. Two important goals are (1) the ability to generate a large number of distinct identities (inter-class separation) with (2) a wide variation in appearance of each identity (intra-class variation). However, existing works 1) are typically limited in how many well-separated identities can be generated and 2) either neglect or use a separate editing model for attribute augmentation. We propose Vec2Face, a holistic model that uses only a sampled vector as input and can flexibly generate and control face images and their attributes. Composed of a feature masked autoencoder and a decoder, Vec2Face is supervised by face image reconstruction and can be conveniently used in inference. Using vectors with low similarity among themselves as inputs, Vec2Face generates well-separated identities. Randomly perturbing an input identity vector within a small range allows Vec2Face to generate faces of the same identity with robust variation in face attributes. It is also possible to generate images with designated attributes by adjusting vector values with a gradient descent method. Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images, whereas 60K is the largest number of identities created in the previous works. FR models trained with the generated HSFace datasets, from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%, on five real-world test sets. For the first time, our model created using a synthetic training set achieves higher accuracy than the model created using a same-scale training set of real face images (on the CALFW test set).
How to Boost Face Recognition with StyleGAN?
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. On the other hand, self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from generative models while preserving the identity. We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) -- and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is based on a standard RFW dataset and a new large-scale RB-WebFace benchmark. The code and data are made publicly available at https://github.com/seva100/stylegan-for-facerec.
Face Recognition in the age of CLIP & Billion image datasets
CLIP (Contrastive Language-Image Pre-training) models developed by OpenAI have achieved outstanding results on various image recognition and retrieval tasks, displaying strong zero-shot performance. This means that they are able to perform effectively on tasks for which they have not been explicitly trained. Inspired by the success of OpenAI CLIP, a new publicly available dataset called LAION-5B was collected which resulted in the development of open ViT-H/14, ViT-G/14 models that outperform the OpenAI L/14 model. The LAION-5B dataset also released an approximate nearest neighbor index, with a web interface for search & subset creation. In this paper, we evaluate the performance of various CLIP models as zero-shot face recognizers. Our findings show that CLIP models perform well on face recognition tasks, but increasing the size of the CLIP model does not necessarily lead to improved accuracy. Additionally, we investigate the robustness of CLIP models against data poisoning attacks by testing their performance on poisoned data. Through this analysis, we aim to understand the potential consequences and misuse of search engines built using CLIP models, which could potentially function as unintentional face recognition engines.
Arc2Face: A Foundation Model of Human Faces
This paper presents Arc2Face, an identity-conditioned face foundation model, which, given the ArcFace embedding of a person, can generate diverse photo-realistic images with an unparalleled degree of face similarity than existing models. Despite previous attempts to decode face recognition features into detailed images, we find that common high-resolution datasets (e.g. FFHQ) lack sufficient identities to reconstruct any subject. To that end, we meticulously upsample a significant portion of the WebFace42M database, the largest public dataset for face recognition (FR). Arc2Face builds upon a pretrained Stable Diffusion model, yet adapts it to the task of ID-to-face generation, conditioned solely on ID vectors. Deviating from recent works that combine ID with text embeddings for zero-shot personalization of text-to-image models, we emphasize on the compactness of FR features, which can fully capture the essence of the human face, as opposed to hand-crafted prompts. Crucially, text-augmented models struggle to decouple identity and text, usually necessitating some description of the given face to achieve satisfactory similarity. Arc2Face, however, only needs the discriminative features of ArcFace to guide the generation, offering a robust prior for a plethora of tasks where ID consistency is of paramount importance. As an example, we train a FR model on synthetic images from our model and achieve superior performance to existing synthetic datasets.
Unmasking Deepfakes: Masked Autoencoding Spatiotemporal Transformers for Enhanced Video Forgery Detection
We present a novel approach for the detection of deepfake videos using a pair of vision transformers pre-trained by a self-supervised masked autoencoding setup. Our method consists of two distinct components, one of which focuses on learning spatial information from individual RGB frames of the video, while the other learns temporal consistency information from optical flow fields generated from consecutive frames. Unlike most approaches where pre-training is performed on a generic large corpus of images, we show that by pre-training on smaller face-related datasets, namely Celeb-A (for the spatial learning component) and YouTube Faces (for the temporal learning component), strong results can be obtained. We perform various experiments to evaluate the performance of our method on commonly used datasets namely FaceForensics++ (Low Quality and High Quality, along with a new highly compressed version named Very Low Quality) and Celeb-DFv2 datasets. Our experiments show that our method sets a new state-of-the-art on FaceForensics++ (LQ, HQ, and VLQ), and obtains competitive results on Celeb-DFv2. Moreover, our method outperforms other methods in the area in a cross-dataset setup where we fine-tune our model on FaceForensics++ and test on CelebDFv2, pointing to its strong cross-dataset generalization ability.
FSFM: A Generalizable Face Security Foundation Model via Self-Supervised Facial Representation Learning
This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
SphereFace2: Binary Classification is All You Need for Deep Face Recognition
State-of-the-art deep face recognition methods are mostly trained with a softmax-based multi-class classification framework. Despite being popular and effective, these methods still have a few shortcomings that limit empirical performance. In this paper, we start by identifying the discrepancy between training and evaluation in the existing multi-class classification framework and then discuss the potential limitations caused by the "competitive" nature of softmax normalization. Motivated by these limitations, we propose a novel binary classification training framework, termed SphereFace2. In contrast to existing methods, SphereFace2 circumvents the softmax normalization, as well as the corresponding closed-set assumption. This effectively bridges the gap between training and evaluation, enabling the representations to be improved individually by each binary classification task. Besides designing a specific well-performing loss function, we summarize a few general principles for this "one-vs-all" binary classification framework so that it can outperform current competitive methods. Our experiments on popular benchmarks demonstrate that SphereFace2 can consistently outperform state-of-the-art deep face recognition methods. The code has been made publicly available.
WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition
In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation protocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.
FaceChain: A Playground for Human-centric Artificial Intelligence Generated Content
Recent advancement in personalized image generation have unveiled the intriguing capability of pre-trained text-to-image models on learning identity information from a collection of portrait images. However, existing solutions are vulnerable in producing truthful details, and usually suffer from several defects such as (i) The generated face exhibit its own unique characteristics, \ie facial shape and facial feature positioning may not resemble key characteristics of the input, and (ii) The synthesized face may contain warped, blurred or corrupted regions. In this paper, we present FaceChain, a personalized portrait generation framework that combines a series of customized image-generation model and a rich set of face-related perceptual understanding models (\eg, face detection, deep face embedding extraction, and facial attribute recognition), to tackle aforementioned challenges and to generate truthful personalized portraits, with only a handful of portrait images as input. Concretely, we inject several SOTA face models into the generation procedure, achieving a more efficient label-tagging, data-processing, and model post-processing compared to previous solutions, such as DreamBooth ~ruiz2023dreambooth , InstantBooth ~shi2023instantbooth , or other LoRA-only approaches ~hu2021lora . Besides, based on FaceChain, we further develop several applications to build a broader playground for better showing its value, including virtual try on and 2D talking head. We hope it can grow to serve the burgeoning needs from the communities. Note that this is an ongoing work that will be consistently refined and improved upon. FaceChain is open-sourced under Apache-2.0 license at https://github.com/modelscope/facechain.
TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective
Vision Transformers (ViTs) have demonstrated powerful representation ability in various visual tasks thanks to their intrinsic data-hungry nature. However, we unexpectedly find that ViTs perform vulnerably when applied to face recognition (FR) scenarios with extremely large datasets. We investigate the reasons for this phenomenon and discover that the existing data augmentation approach and hard sample mining strategy are incompatible with ViTs-based FR backbone due to the lack of tailored consideration on preserving face structural information and leveraging each local token information. To remedy these problems, this paper proposes a superior FR model called TransFace, which employs a patch-level data augmentation strategy named DPAP and a hard sample mining strategy named EHSM. Specially, DPAP randomly perturbs the amplitude information of dominant patches to expand sample diversity, which effectively alleviates the overfitting problem in ViTs. EHSM utilizes the information entropy in the local tokens to dynamically adjust the importance weight of easy and hard samples during training, leading to a more stable prediction. Experiments on several benchmarks demonstrate the superiority of our TransFace. Code and models are available at https://github.com/DanJun6737/TransFace.
Deep Learning Face Attributes in the Wild
Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.
FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
Combined CNN and ViT features off-the-shelf: Another astounding baseline for recognition
We apply pre-trained architectures, originally developed for the ImageNet Large Scale Visual Recognition Challenge, for periocular recognition. These architectures have demonstrated significant success in various computer vision tasks beyond the ones for which they were designed. This work builds on our previous study using off-the-shelf Convolutional Neural Network (CNN) and extends it to include the more recently proposed Vision Transformers (ViT). Despite being trained for generic object classification, middle-layer features from CNNs and ViTs are a suitable way to recognize individuals based on periocular images. We also demonstrate that CNNs and ViTs are highly complementary since their combination results in boosted accuracy. In addition, we show that a small portion of these pre-trained models can achieve good accuracy, resulting in thinner models with fewer parameters, suitable for resource-limited environments such as mobiles. This efficiency improves if traditional handcrafted features are added as well.
The effectiveness of MAE pre-pretraining for billion-scale pretraining
This paper revisits the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks. Typically, state-of-the-art foundation models are pretrained using large scale (weakly) supervised datasets with billions of images. We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model. While MAE has only been shown to scale with the size of models, we find that it scales with the size of the training dataset as well. Thus, our MAE-based pre-pretraining scales with both model and data size making it applicable for training foundation models. Pre-pretraining consistently improves both the model convergence and the downstream transfer performance across a range of model scales (millions to billions of parameters), and dataset sizes (millions to billions of images). We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition. Our largest model achieves new state-of-the-art results on iNaturalist-18 (91.3%), 1-shot ImageNet-1k (62.1%), and zero-shot transfer on Food-101 (96.0%). Our study reveals that model initialization plays a significant role, even for web-scale pretraining with billions of images.
Selfie: Self-supervised Pretraining for Image Embedding
We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs.
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover's Distance Improves Out-Of-Distribution Face Identification
Face identification (FI) is ubiquitous and drives many high-stake decisions made by law enforcement. State-of-the-art FI approaches compare two images by taking the cosine similarity between their image embeddings. Yet, such an approach suffers from poor out-of-distribution (OOD) generalization to new types of images (e.g., when a query face is masked, cropped, or rotated) not included in the training set or the gallery. Here, we propose a re-ranking approach that compares two faces using the Earth Mover's Distance on the deep, spatial features of image patches. Our extra comparison stage explicitly examines image similarity at a fine-grained level (e.g., eyes to eyes) and is more robust to OOD perturbations and occlusions than traditional FI. Interestingly, without finetuning feature extractors, our method consistently improves the accuracy on all tested OOD queries: masked, cropped, rotated, and adversarial while obtaining similar results on in-distribution images.
Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age
Technologies for recognizing facial attributes like race, gender, age, and emotion have several applications, such as surveillance, advertising content, sentiment analysis, and the study of demographic trends and social behaviors. Analyzing demographic characteristics based on images and analyzing facial expressions have several challenges due to the complexity of humans' facial attributes. Traditional approaches have employed CNNs and various other deep learning techniques, trained on extensive collections of labeled images. While these methods demonstrated effective performance, there remains potential for further enhancements. In this paper, we propose to utilize vision language models (VLMs) such as generative pre-trained transformer (GPT), GEMINI, large language and vision assistant (LLAVA), PaliGemma, and Microsoft Florence2 to recognize facial attributes such as race, gender, age, and emotion from images with human faces. Various datasets like FairFace, AffectNet, and UTKFace have been utilized to evaluate the solutions. The results show that VLMs are competitive if not superior to traditional techniques. Additionally, we propose "FaceScanPaliGemma"--a fine-tuned PaliGemma model--for race, gender, age, and emotion recognition. The results show an accuracy of 81.1%, 95.8%, 80%, and 59.4% for race, gender, age group, and emotion classification, respectively, outperforming pre-trained version of PaliGemma, other VLMs, and SotA methods. Finally, we propose "FaceScanGPT", which is a GPT-4o model to recognize the above attributes when several individuals are present in the image using a prompt engineered for a person with specific facial and/or physical attributes. The results underscore the superior multitasking capability of FaceScanGPT to detect the individual's attributes like hair cut, clothing color, postures, etc., using only a prompt to drive the detection and recognition tasks.
IDiff-Face: Synthetic-based Face Recognition through Fizzy Identity-Conditioned Diffusion Models
The availability of large-scale authentic face databases has been crucial to the significant advances made in face recognition research over the past decade. However, legal and ethical concerns led to the recent retraction of many of these databases by their creators, raising questions about the continuity of future face recognition research without one of its key resources. Synthetic datasets have emerged as a promising alternative to privacy-sensitive authentic data for face recognition development. However, recent synthetic datasets that are used to train face recognition models suffer either from limitations in intra-class diversity or cross-class (identity) discrimination, leading to less optimal accuracies, far away from the accuracies achieved by models trained on authentic data. This paper targets this issue by proposing IDiff-Face, a novel approach based on conditional latent diffusion models for synthetic identity generation with realistic identity variations for face recognition training. Through extensive evaluations, our proposed synthetic-based face recognition approach pushed the limits of state-of-the-art performances, achieving, for example, 98.00% accuracy on the Labeled Faces in the Wild (LFW) benchmark, far ahead from the recent synthetic-based face recognition solutions with 95.40% and bridging the gap to authentic-based face recognition with 99.82% accuracy.
Integrally Pre-Trained Transformer Pyramid Networks
In this paper, we present an integral pre-training framework based on masked image modeling (MIM). We advocate for pre-training the backbone and neck jointly so that the transfer gap between MIM and downstream recognition tasks is minimal. We make two technical contributions. First, we unify the reconstruction and recognition necks by inserting a feature pyramid into the pre-training stage. Second, we complement mask image modeling (MIM) with masked feature modeling (MFM) that offers multi-stage supervision to the feature pyramid. The pre-trained models, termed integrally pre-trained transformer pyramid networks (iTPNs), serve as powerful foundation models for visual recognition. In particular, the base/large-level iTPN achieves an 86.2%/87.8% top-1 accuracy on ImageNet-1K, a 53.2%/55.6% box AP on COCO object detection with 1x training schedule using Mask-RCNN, and a 54.7%/57.7% mIoU on ADE20K semantic segmentation using UPerHead -- all these results set new records. Our work inspires the community to work on unifying upstream pre-training and downstream fine-tuning tasks. Code and the pre-trained models will be released at https://github.com/sunsmarterjie/iTPN.
DCFace: Synthetic Face Generation with Dual Condition Diffusion Model
Generating synthetic datasets for training face recognition models is challenging because dataset generation entails more than creating high fidelity images. It involves generating multiple images of same subjects under different factors (e.g., variations in pose, illumination, expression, aging and occlusion) which follows the real image conditional distribution. Previous works have studied the generation of synthetic datasets using GAN or 3D models. In this work, we approach the problem from the aspect of combining subject appearance (ID) and external factor (style) conditions. These two conditions provide a direct way to control the inter-class and intra-class variations. To this end, we propose a Dual Condition Face Generator (DCFace) based on a diffusion model. Our novel Patch-wise style extractor and Time-step dependent ID loss enables DCFace to consistently produce face images of the same subject under different styles with precise control. Face recognition models trained on synthetic images from the proposed DCFace provide higher verification accuracies compared to previous works by 6.11% on average in 4 out of 5 test datasets, LFW, CFP-FP, CPLFW, AgeDB and CALFW. Code is available at https://github.com/mk-minchul/dcface
Shape Preserving Facial Landmarks with Graph Attention Networks
Top-performing landmark estimation algorithms are based on exploiting the excellent ability of large convolutional neural networks (CNNs) to represent local appearance. However, it is well known that they can only learn weak spatial relationships. To address this problem, we propose a model based on the combination of a CNN with a cascade of Graph Attention Network regressors. To this end, we introduce an encoding that jointly represents the appearance and location of facial landmarks and an attention mechanism to weigh the information according to its reliability. This is combined with a multi-task approach to initialize the location of graph nodes and a coarse-to-fine landmark description scheme. Our experiments confirm that the proposed model learns a global representation of the structure of the face, achieving top performance in popular benchmarks on head pose and landmark estimation. The improvement provided by our model is most significant in situations involving large changes in the local appearance of landmarks.
Face0: Instantaneously Conditioning a Text-to-Image Model on a Face
We present Face0, a novel way to instantaneously condition a text-to-image generation model on a face, in sample time, without any optimization procedures such as fine-tuning or inversions. We augment a dataset of annotated images with embeddings of the included faces and train an image generation model, on the augmented dataset. Once trained, our system is practically identical at inference time to the underlying base model, and is therefore able to generate images, given a user-supplied face image and a prompt, in just a couple of seconds. Our method achieves pleasing results, is remarkably simple, extremely fast, and equips the underlying model with new capabilities, like controlling the generated images both via text or via direct manipulation of the input face embeddings. In addition, when using a fixed random vector instead of a face embedding from a user supplied image, our method essentially solves the problem of consistent character generation across images. Finally, while requiring further research, we hope that our method, which decouples the model's textual biases from its biases on faces, might be a step towards some mitigation of biases in future text-to-image models.
Sample and Computation Redistribution for Efficient Face Detection
Although tremendous strides have been made in uncontrolled face detection, efficient face detection with a low computation cost as well as high precision remains an open challenge. In this paper, we point out that training data sampling and computation distribution strategies are the keys to efficient and accurate face detection. Motivated by these observations, we introduce two simple but effective methods (1) Sample Redistribution (SR), which augments training samples for the most needed stages, based on the statistics of benchmark datasets; and (2) Computation Redistribution (CR), which reallocates the computation between the backbone, neck and head of the model, based on a meticulously defined search methodology. Extensive experiments conducted on WIDER FACE demonstrate the state-of-the-art efficiency-accuracy trade-off for the proposed \scrfd family across a wide range of compute regimes. In particular, 34 outperforms the best competitor, TinaFace, by 3.86% (AP at hard set) while being more than 3times faster on GPUs with VGA-resolution images. We also release our code to facilitate future research.
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto standard, recent studies suggest that large-scale weakly supervised pre-training can outperform fully supervised approaches. This paper revisits weakly-supervised pre-training of models using hashtag supervision with modern versions of residual networks and the largest-ever dataset of images and corresponding hashtags. We study the performance of the resulting models in various transfer-learning settings including zero-shot transfer. We also compare our models with those obtained via large-scale self-supervised learning. We find our weakly-supervised models to be very competitive across all settings, and find they substantially outperform their self-supervised counterparts. We also include an investigation into whether our models learned potentially troubling associations or stereotypes. Overall, our results provide a compelling argument for the use of weakly supervised learning in the development of visual recognition systems. Our models, Supervised Weakly through hashtAGs (SWAG), are available publicly.
Person Recognition in Personal Photo Collections
Recognising persons in everyday photos presents major challenges (occluded faces, different clothing, locations, etc.) for machine vision. We propose a convnet based person recognition system on which we provide an in-depth analysis of informativeness of different body cues, impact of training data, and the common failure modes of the system. In addition, we discuss the limitations of existing benchmarks and propose more challenging ones. Our method is simple and is built on open source and open data, yet it improves the state of the art results on a large dataset of social media photos (PIPA).
Explainable Face Recognition
Explainable face recognition is the problem of explaining why a facial matcher matches faces. In this paper, we provide the first comprehensive benchmark and baseline evaluation for explainable face recognition. We define a new evaluation protocol called the ``inpainting game'', which is a curated set of 3648 triplets (probe, mate, nonmate) of 95 subjects, which differ by synthetically inpainting a chosen facial characteristic like the nose, eyebrows or mouth creating an inpainted nonmate. An explainable face matcher is tasked with generating a network attention map which best explains which regions in a probe image match with a mated image, and not with an inpainted nonmate for each triplet. This provides ground truth for quantifying what image regions contribute to face matching. Furthermore, we provide a comprehensive benchmark on this dataset comparing five state of the art methods for network attention in face recognition on three facial matchers. This benchmark includes two new algorithms for network attention called subtree EBP and Density-based Input Sampling for Explanation (DISE) which outperform the state of the art by a wide margin. Finally, we show qualitative visualization of these network attention techniques on novel images, and explore how these explainable face recognition models can improve transparency and trust for facial matchers.
Benchmarking Algorithmic Bias in Face Recognition: An Experimental Approach Using Synthetic Faces and Human Evaluation
We propose an experimental method for measuring bias in face recognition systems. Existing methods to measure bias depend on benchmark datasets that are collected in the wild and annotated for protected (e.g., race, gender) and non-protected (e.g., pose, lighting) attributes. Such observational datasets only permit correlational conclusions, e.g., "Algorithm A's accuracy is different on female and male faces in dataset X.". By contrast, experimental methods manipulate attributes individually and thus permit causal conclusions, e.g., "Algorithm A's accuracy is affected by gender and skin color." Our method is based on generating synthetic faces using a neural face generator, where each attribute of interest is modified independently while leaving all other attributes constant. Human observers crucially provide the ground truth on perceptual identity similarity between synthetic image pairs. We validate our method quantitatively by evaluating race and gender biases of three research-grade face recognition models. Our synthetic pipeline reveals that for these algorithms, accuracy is lower for Black and East Asian population subgroups. Our method can also quantify how perceptual changes in attributes affect face identity distances reported by these models. Our large synthetic dataset, consisting of 48,000 synthetic face image pairs (10,200 unique synthetic faces) and 555,000 human annotations (individual attributes and pairwise identity comparisons) is available to researchers in this important area.
RoI Tanh-polar Transformer Network for Face Parsing in the Wild
Face parsing aims to predict pixel-wise labels for facial components of a target face in an image. Existing approaches usually crop the target face from the input image with respect to a bounding box calculated during pre-processing, and thus can only parse inner facial Regions of Interest~(RoIs). Peripheral regions like hair are ignored and nearby faces that are partially included in the bounding box can cause distractions. Moreover, these methods are only trained and evaluated on near-frontal portrait images and thus their performance for in-the-wild cases has been unexplored. To address these issues, this paper makes three contributions. First, we introduce iBugMask dataset for face parsing in the wild, which consists of 21,866 training images and 1,000 testing images. The training images are obtained by augmenting an existing dataset with large face poses. The testing images are manually annotated with 11 facial regions and there are large variations in sizes, poses, expressions and background. Second, we propose RoI Tanh-polar transform that warps the whole image to a Tanh-polar representation with a fixed ratio between the face area and the context, guided by the target bounding box. The new representation contains all information in the original image, and allows for rotation equivariance in the convolutional neural networks~(CNNs). Third, we propose a hybrid residual representation learning block, coined HybridBlock, that contains convolutional layers in both the Tanh-polar space and the Tanh-Cartesian space, allowing for receptive fields of different shapes in CNNs. Through extensive experiments, we show that the proposed method improves the state-of-the-art for face parsing in the wild and does not require facial landmarks for alignment.
FaceXFormer: A Unified Transformer for Facial Analysis
In this work, we introduce FaceXformer, an end-to-end unified transformer model for a comprehensive range of facial analysis tasks such as face parsing, landmark detection, head pose estimation, attributes recognition, and estimation of age, gender, race, and landmarks visibility. Conventional methods in face analysis have often relied on task-specific designs and preprocessing techniques, which limit their approach to a unified architecture. Unlike these conventional methods, our FaceXformer leverages a transformer-based encoder-decoder architecture where each task is treated as a learnable token, enabling the integration of multiple tasks within a single framework. Moreover, we propose a parameter-efficient decoder, FaceX, which jointly processes face and task tokens, thereby learning generalized and robust face representations across different tasks. To the best of our knowledge, this is the first work to propose a single model capable of handling all these facial analysis tasks using transformers. We conducted a comprehensive analysis of effective backbones for unified face task processing and evaluated different task queries and the synergy between them. We conduct experiments against state-of-the-art specialized models and previous multi-task models in both intra-dataset and cross-dataset evaluations across multiple benchmarks. Additionally, our model effectively handles images "in-the-wild," demonstrating its robustness and generalizability across eight different tasks, all while maintaining the real-time performance of 37 FPS.
Face-MakeUp: Multimodal Facial Prompts for Text-to-Image Generation
Facial images have extensive practical applications. Although the current large-scale text-image diffusion models exhibit strong generation capabilities, it is challenging to generate the desired facial images using only text prompt. Image prompts are a logical choice. However, current methods of this type generally focus on general domain. In this paper, we aim to optimize image makeup techniques to generate the desired facial images. Specifically, (1) we built a dataset of 4 million high-quality face image-text pairs (FaceCaptionHQ-4M) based on LAION-Face to train our Face-MakeUp model; (2) to maintain consistency with the reference facial image, we extract/learn multi-scale content features and pose features for the facial image, integrating these into the diffusion model to enhance the preservation of facial identity features for diffusion models. Validation on two face-related test datasets demonstrates that our Face-MakeUp can achieve the best comprehensive performance.All codes are available at:https://github.com/ddw2AIGROUP2CQUPT/Face-MakeUp
Visually-Aware Context Modeling for News Image Captioning
News Image Captioning aims to create captions from news articles and images, emphasizing the connection between textual context and visual elements. Recognizing the significance of human faces in news images and the face-name co-occurrence pattern in existing datasets, we propose a face-naming module for learning better name embeddings. Apart from names, which can be directly linked to an image area (faces), news image captions mostly contain context information that can only be found in the article. We design a retrieval strategy using CLIP to retrieve sentences that are semantically close to the image, mimicking human thought process of linking articles to images. Furthermore, to tackle the problem of the imbalanced proportion of article context and image context in captions, we introduce a simple yet effective method Contrasting with Language Model backbone (CoLaM) to the training pipeline. We conduct extensive experiments to demonstrate the efficacy of our framework. We out-perform the previous state-of-the-art (without external data) by 7.97/5.80 CIDEr scores on GoodNews/NYTimes800k. Our code is available at https://github.com/tingyu215/VACNIC.
A Rapid Test for Accuracy and Bias of Face Recognition Technology
Measuring the accuracy of face recognition (FR) systems is essential for improving performance and ensuring responsible use. Accuracy is typically estimated using large annotated datasets, which are costly and difficult to obtain. We propose a novel method for 1:1 face verification that benchmarks FR systems quickly and without manual annotation, starting from approximate labels (e.g., from web search results). Unlike previous methods for training set label cleaning, ours leverages the embedding representation of the models being evaluated, achieving high accuracy in smaller-sized test datasets. Our approach reliably estimates FR accuracy and ranking, significantly reducing the time and cost of manual labeling. We also introduce the first public benchmark of five FR cloud services, revealing demographic biases, particularly lower accuracy for Asian women. Our rapid test method can democratize FR testing, promoting scrutiny and responsible use of the technology. Our method is provided as a publicly accessible tool at https://github.com/caltechvisionlab/frt-rapid-test
HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception
Model pre-training is essential in human-centric perception. In this paper, we first introduce masked image modeling (MIM) as a pre-training approach for this task. Upon revisiting the MIM training strategy, we reveal that human structure priors offer significant potential. Motivated by this insight, we further incorporate an intuitive human structure prior - human parts - into pre-training. Specifically, we employ this prior to guide the mask sampling process. Image patches, corresponding to human part regions, have high priority to be masked out. This encourages the model to concentrate more on body structure information during pre-training, yielding substantial benefits across a range of human-centric perception tasks. To further capture human characteristics, we propose a structure-invariant alignment loss that enforces different masked views, guided by the human part prior, to be closely aligned for the same image. We term the entire method as HAP. HAP simply uses a plain ViT as the encoder yet establishes new state-of-the-art performance on 11 human-centric benchmarks, and on-par result on one dataset. For example, HAP achieves 78.1% mAP on MSMT17 for person re-identification, 86.54% mA on PA-100K for pedestrian attribute recognition, 78.2% AP on MS COCO for 2D pose estimation, and 56.0 PA-MPJPE on 3DPW for 3D pose and shape estimation.
UniF^2ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on coarse facial attribute understanding, with limited capacity to handle fine-grained facial attributes and without addressing generation capabilities. To overcome these limitations, we propose UniF^2ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train UniF^2ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, UniF^2ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on UniF^2ace-130K demonstrate that UniF^2ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
CoReS: Compatible Representations via Stationarity
Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set, which is the typical case in real applications.
SwinFace: A Multi-task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation
In recent years, vision transformers have been introduced into face recognition and analysis and have achieved performance breakthroughs. However, most previous methods generally train a single model or an ensemble of models to perform the desired task, which ignores the synergy among different tasks and fails to achieve improved prediction accuracy, increased data efficiency, and reduced training time. This paper presents a multi-purpose algorithm for simultaneous face recognition, facial expression recognition, age estimation, and face attribute estimation (40 attributes including gender) based on a single Swin Transformer. Our design, the SwinFace, consists of a single shared backbone together with a subnet for each set of related tasks. To address the conflicts among multiple tasks and meet the different demands of tasks, a Multi-Level Channel Attention (MLCA) module is integrated into each task-specific analysis subnet, which can adaptively select the features from optimal levels and channels to perform the desired tasks. Extensive experiments show that the proposed model has a better understanding of the face and achieves excellent performance for all tasks. Especially, it achieves 90.97% accuracy on RAF-DB and 0.22 epsilon-error on CLAP2015, which are state-of-the-art results on facial expression recognition and age estimation respectively. The code and models will be made publicly available at https://github.com/lxq1000/SwinFace.
AdaFace: Quality Adaptive Margin for Face Recognition
Recognition in low quality face datasets is challenging because facial attributes are obscured and degraded. Advances in margin-based loss functions have resulted in enhanced discriminability of faces in the embedding space. Further, previous studies have studied the effect of adaptive losses to assign more importance to misclassified (hard) examples. In this work, we introduce another aspect of adaptiveness in the loss function, namely the image quality. We argue that the strategy to emphasize misclassified samples should be adjusted according to their image quality. Specifically, the relative importance of easy or hard samples should be based on the sample's image quality. We propose a new loss function that emphasizes samples of different difficulties based on their image quality. Our method achieves this in the form of an adaptive margin function by approximating the image quality with feature norms. Extensive experiments show that our method, AdaFace, improves the face recognition performance over the state-of-the-art (SoTA) on four datasets (IJB-B, IJB-C, IJB-S and TinyFace). Code and models are released in https://github.com/mk-minchul/AdaFace.
Faceptor: A Generalist Model for Face Perception
With the comprehensive research conducted on various face analysis tasks, there is a growing interest among researchers to develop a unified approach to face perception. Existing methods mainly discuss unified representation and training, which lack task extensibility and application efficiency. To tackle this issue, we focus on the unified model structure, exploring a face generalist model. As an intuitive design, Naive Faceptor enables tasks with the same output shape and granularity to share the structural design of the standardized output head, achieving improved task extensibility. Furthermore, Faceptor is proposed to adopt a well-designed single-encoder dual-decoder architecture, allowing task-specific queries to represent new-coming semantics. This design enhances the unification of model structure while improving application efficiency in terms of storage overhead. Additionally, we introduce Layer-Attention into Faceptor, enabling the model to adaptively select features from optimal layers to perform the desired tasks. Through joint training on 13 face perception datasets, Faceptor achieves exceptional performance in facial landmark localization, face parsing, age estimation, expression recognition, binary attribute classification, and face recognition, achieving or surpassing specialized methods in most tasks. Our training framework can also be applied to auxiliary supervised learning, significantly improving performance in data-sparse tasks such as age estimation and expression recognition. The code and models will be made publicly available at https://github.com/lxq1000/Faceptor.
Black-Box Face Recovery from Identity Features
In this work, we present a novel algorithm based on an it-erative sampling of random Gaussian blobs for black-box face recovery, given only an output feature vector of deep face recognition systems. We attack the state-of-the-art face recognition system (ArcFace) to test our algorithm. Another network with different architecture (FaceNet) is used as an independent critic showing that the target person can be identified with the reconstructed image even with no access to the attacked model. Furthermore, our algorithm requires a significantly less number of queries compared to the state-of-the-art solution.
A Simple Baseline that Questions the Use of Pretrained-Models in Continual Learning
With the success of pretraining techniques in representation learning, a number of continual learning methods based on pretrained models have been proposed. Some of these methods design continual learning mechanisms on the pre-trained representations and only allow minimum updates or even no updates of the backbone models during the training of continual learning. In this paper, we question whether the complexity of these models is needed to achieve good performance by comparing them to a simple baseline that we designed. We argue that the pretrained feature extractor itself can be strong enough to achieve a competitive or even better continual learning performance on Split-CIFAR100 and CoRe 50 benchmarks. To validate this, we conduct a very simple baseline that 1) use the frozen pretrained model to extract image features for every class encountered during the continual learning stage and compute their corresponding mean features on training data, and 2) predict the class of the input based on the nearest neighbor distance between test samples and mean features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is single-headed, exemplar-free, and can be task-free (by updating the means continually). This baseline achieved 88.53% on 10-Split-CIFAR-100, surpassing most state-of-the-art continual learning methods that are all initialized using the same pretrained transformer model. We hope our baseline may encourage future progress in designing learning systems that can continually add quality to the learning representations even if they started from some pretrained weights.
Learning Face Representation from Scratch
Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
Cross-video Identity Correlating for Person Re-identification Pre-training
Recent researches have proven that pre-training on large-scale person images extracted from internet videos is an effective way in learning better representations for person re-identification. However, these researches are mostly confined to pre-training at the instance-level or single-video tracklet-level. They ignore the identity-invariance in images of the same person across different videos, which is a key focus in person re-identification. To address this issue, we propose a Cross-video Identity-cOrrelating pre-traiNing (CION) framework. Defining a noise concept that comprehensively considers both intra-identity consistency and inter-identity discrimination, CION seeks the identity correlation from cross-video images by modeling it as a progressive multi-level denoising problem. Furthermore, an identity-guided self-distillation loss is proposed to implement better large-scale pre-training by mining the identity-invariance within person images. We conduct extensive experiments to verify the superiority of our CION in terms of efficiency and performance. CION achieves significantly leading performance with even fewer training samples. For example, compared with the previous state-of-the-art~ISR, CION with the same ResNet50-IBN achieves higher mAP of 93.3\% and 74.3\% on Market1501 and MSMT17, while only utilizing 8\% training samples. Finally, with CION demonstrating superior model-agnostic ability, we contribute a model zoo named ReIDZoo to meet diverse research and application needs in this field. It contains a series of CION pre-trained models with spanning structures and parameters, totaling 32 models with 10 different structures, including GhostNet, ConvNext, RepViT, FastViT and so on. The code and models will be made publicly available at https://github.com/Zplusdragon/CION_ReIDZoo.
Adversarially-Guided Portrait Matting
We present a method for generating alpha mattes using a limited data source. We pretrain a novel transformerbased model (StyleMatte) on portrait datasets. We utilize this model to provide image-mask pairs for the StyleGAN3-based network (StyleMatteGAN). This network is trained unsupervisedly and generates previously unseen imagemask training pairs that are fed back to StyleMatte. We demonstrate that the performance of the matte pulling network improves during this cycle and obtains top results on the human portraits and state-of-the-art metrics on animals dataset. Furthermore, StyleMatteGAN provides high-resolution, privacy-preserving portraits with alpha mattes, making it suitable for various image composition tasks. Our code is available at https://github.com/chroneus/stylematte
Target-Aware Generative Augmentations for Single-Shot Adaptation
In this paper, we address the problem of adapting models from a source domain to a target domain, a task that has become increasingly important due to the brittle generalization of deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic toolbox data augmentations in cases of limited target data availability. We consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA, which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments on a variety of benchmarks, distribution shifts and image corruptions, we find that SiSTA produces significantly improved generalization over existing baselines in face attribute detection and multi-class object recognition. Furthermore, SiSTA performs competitively to models obtained by training on larger target datasets. Our codes can be accessed at https://github.com/Rakshith-2905/SiSTA.
PLIP: Language-Image Pre-training for Person Representation Learning
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suffer from unsatisfactory performance. The reason is that they neglect critical person-related characteristics, i.e., fine-grained attributes and identities. To address this issue, we propose a novel language-image pre-training framework for person representation learning, termed PLIP. Specifically, we elaborately design three pretext tasks: 1) Text-guided Image Colorization, aims to establish the correspondence between the person-related image regions and the fine-grained color-part textual phrases. 2) Image-guided Attributes Prediction, aims to mine fine-grained attribute information of the person body in the image; and 3) Identity-based Vision-Language Contrast, aims to correlate the cross-modal representations at the identity level rather than the instance level. Moreover, to implement our pre-train framework, we construct a large-scale person dataset with image-text pairs named SYNTH-PEDES by automatically generating textual annotations. We pre-train PLIP on SYNTH-PEDES and evaluate our models by spanning downstream person-centric tasks. PLIP not only significantly improves existing methods on all these tasks, but also shows great ability in the zero-shot and domain generalization settings. The code, dataset and weights will be released at~https://github.com/Zplusdragon/PLIP
DreamIdentity: Improved Editability for Efficient Face-identity Preserved Image Generation
While large-scale pre-trained text-to-image models can synthesize diverse and high-quality human-centric images, an intractable problem is how to preserve the face identity for conditioned face images. Existing methods either require time-consuming optimization for each face-identity or learning an efficient encoder at the cost of harming the editability of models. In this work, we present an optimization-free method for each face identity, meanwhile keeping the editability for text-to-image models. Specifically, we propose a novel face-identity encoder to learn an accurate representation of human faces, which applies multi-scale face features followed by a multi-embedding projector to directly generate the pseudo words in the text embedding space. Besides, we propose self-augmented editability learning to enhance the editability of models, which is achieved by constructing paired generated face and edited face images using celebrity names, aiming at transferring mature ability of off-the-shelf text-to-image models in celebrity faces to unseen faces. Extensive experiments show that our methods can generate identity-preserved images under different scenes at a much faster speed.
Partial FC: Training 10 Million Identities on a Single Machine
Face recognition has been an active and vital topic among computer vision community for a long time. Previous researches mainly focus on loss functions used for facial feature extraction network, among which the improvements of softmax-based loss functions greatly promote the performance of face recognition. However, the contradiction between the drastically increasing number of face identities and the shortage of GPU memories is gradually becoming irreconcilable. In this paper, we thoroughly analyze the optimization goal of softmax-based loss functions and the difficulty of training massive identities. We find that the importance of negative classes in softmax function in face representation learning is not as high as we previously thought. The experiment demonstrates no loss of accuracy when training with only 10\% randomly sampled classes for the softmax-based loss functions, compared with training with full classes using state-of-the-art models on mainstream benchmarks. We also implement a very efficient distributed sampling algorithm, taking into account model accuracy and training efficiency, which uses only eight NVIDIA RTX2080Ti to complete classification tasks with tens of millions of identities. The code of this paper has been made available https://github.com/deepinsight/insightface/tree/master/recognition/partial_fc.
Exploring the Limits of Weakly Supervised Pretraining
State-of-the-art visual perception models for a wide range of tasks rely on supervised pretraining. ImageNet classification is the de facto pretraining task for these models. Yet, ImageNet is now nearly ten years old and is by modern standards "small". Even so, relatively little is known about the behavior of pretraining with datasets that are multiple orders of magnitude larger. The reasons are obvious: such datasets are difficult to collect and annotate. In this paper, we present a unique study of transfer learning with large convolutional networks trained to predict hashtags on billions of social media images. Our experiments demonstrate that training for large-scale hashtag prediction leads to excellent results. We show improvements on several image classification and object detection tasks, and report the highest ImageNet-1k single-crop, top-1 accuracy to date: 85.4% (97.6% top-5). We also perform extensive experiments that provide novel empirical data on the relationship between large-scale pretraining and transfer learning performance.
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset
We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.
Learning Transferable Visual Models From Natural Language Supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
Hard Patches Mining for Masked Image Modeling
Masked image modeling (MIM) has attracted much research attention due to its promising potential for learning scalable visual representations. In typical approaches, models usually focus on predicting specific contents of masked patches, and their performances are highly related to pre-defined mask strategies. Intuitively, this procedure can be considered as training a student (the model) on solving given problems (predict masked patches). However, we argue that the model should not only focus on solving given problems, but also stand in the shoes of a teacher to produce a more challenging problem by itself. To this end, we propose Hard Patches Mining (HPM), a brand-new framework for MIM pre-training. We observe that the reconstruction loss can naturally be the metric of the difficulty of the pre-training task. Therefore, we introduce an auxiliary loss predictor, predicting patch-wise losses first and deciding where to mask next. It adopts a relative relationship learning strategy to prevent overfitting to exact reconstruction loss values. Experiments under various settings demonstrate the effectiveness of HPM in constructing masked images. Furthermore, we empirically find that solely introducing the loss prediction objective leads to powerful representations, verifying the efficacy of the ability to be aware of where is hard to reconstruct.
StableIdentity: Inserting Anybody into Anywhere at First Sight
Recent advances in large pretrained text-to-image models have shown unprecedented capabilities for high-quality human-centric generation, however, customizing face identity is still an intractable problem. Existing methods cannot ensure stable identity preservation and flexible editability, even with several images for each subject during training. In this work, we propose StableIdentity, which allows identity-consistent recontextualization with just one face image. More specifically, we employ a face encoder with an identity prior to encode the input face, and then land the face representation into a space with an editable prior, which is constructed from celeb names. By incorporating identity prior and editability prior, the learned identity can be injected anywhere with various contexts. In addition, we design a masked two-phase diffusion loss to boost the pixel-level perception of the input face and maintain the diversity of generation. Extensive experiments demonstrate our method outperforms previous customization methods. In addition, the learned identity can be flexibly combined with the off-the-shelf modules such as ControlNet. Notably, to the best knowledge, we are the first to directly inject the identity learned from a single image into video/3D generation without finetuning. We believe that the proposed StableIdentity is an important step to unify image, video, and 3D customized generation models.
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
Face detection and alignment in unconstrained environment are challenging due to various poses, illuminations and occlusions. Recent studies show that deep learning approaches can achieve impressive performance on these two tasks. In this paper, we propose a deep cascaded multi-task framework which exploits the inherent correlation between them to boost up their performance. In particular, our framework adopts a cascaded structure with three stages of carefully designed deep convolutional networks that predict face and landmark location in a coarse-to-fine manner. In addition, in the learning process, we propose a new online hard sample mining strategy that can improve the performance automatically without manual sample selection. Our method achieves superior accuracy over the state-of-the-art techniques on the challenging FDDB and WIDER FACE benchmark for face detection, and AFLW benchmark for face alignment, while keeps real time performance.
Learnable PINs: Cross-Modal Embeddings for Person Identity
We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.
Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition
Recent studies show that vision models pre-trained in generic visual learning tasks with large-scale data can provide useful feature representations for a wide range of visual perception problems. However, few attempts have been made to exploit pre-trained foundation models in visual place recognition (VPR). Due to the inherent difference in training objectives and data between the tasks of model pre-training and VPR, how to bridge the gap and fully unleash the capability of pre-trained models for VPR is still a key issue to address. To this end, we propose a novel method to realize seamless adaptation of pre-trained models for VPR. Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method to achieve both global and local adaptation efficiently, in which only lightweight adapters are tuned without adjusting the pre-trained model. Besides, to guide effective adaptation, we propose a mutual nearest neighbor local feature loss, which ensures proper dense local features are produced for local matching and avoids time-consuming spatial verification in re-ranking. Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time, and uses about only 3% retrieval runtime of the two-stage VPR methods with RANSAC-based spatial verification. It ranks 1st on the MSLS challenge leaderboard (at the time of submission). The code is released at https://github.com/Lu-Feng/SelaVPR.
DINOv2: Learning Robust Visual Features without Supervision
The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability
The quality of face images significantly influences the performance of underlying face recognition algorithms. Face image quality assessment (FIQA) estimates the utility of the captured image in achieving reliable and accurate recognition performance. In this work, we propose a novel learning paradigm that learns internal network observations during the training process. Based on that, our proposed CR-FIQA uses this paradigm to estimate the face image quality of a sample by predicting its relative classifiability. This classifiability is measured based on the allocation of the training sample feature representation in angular space with respect to its class center and the nearest negative class center. We experimentally illustrate the correlation between the face image quality and the sample relative classifiability. As such property is only observable for the training dataset, we propose to learn this property from the training dataset and utilize it to predict the quality measure on unseen samples. This training is performed simultaneously while optimizing the class centers by an angular margin penalty-based softmax loss used for face recognition model training. Through extensive evaluation experiments on eight benchmarks and four face recognition models, we demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms.
SegFace: Face Segmentation of Long-Tail Classes
Face parsing refers to the semantic segmentation of human faces into key facial regions such as eyes, nose, hair, etc. It serves as a prerequisite for various advanced applications, including face editing, face swapping, and facial makeup, which often require segmentation masks for classes like eyeglasses, hats, earrings, and necklaces. These infrequently occurring classes are called long-tail classes, which are overshadowed by more frequently occurring classes known as head classes. Existing methods, primarily CNN-based, tend to be dominated by head classes during training, resulting in suboptimal representation for long-tail classes. Previous works have largely overlooked the problem of poor segmentation performance of long-tail classes. To address this issue, we propose SegFace, a simple and efficient approach that uses a lightweight transformer-based model which utilizes learnable class-specific tokens. The transformer decoder leverages class-specific tokens, allowing each token to focus on its corresponding class, thereby enabling independent modeling of each class. The proposed approach improves the performance of long-tail classes, thereby boosting overall performance. To the best of our knowledge, SegFace is the first work to employ transformer models for face parsing. Moreover, our approach can be adapted for low-compute edge devices, achieving 95.96 FPS. We conduct extensive experiments demonstrating that SegFace significantly outperforms previous state-of-the-art models, achieving a mean F1 score of 88.96 (+2.82) on the CelebAMask-HQ dataset and 93.03 (+0.65) on the LaPa dataset. Code: https://github.com/Kartik-3004/SegFace
Monocular Identity-Conditioned Facial Reflectance Reconstruction
Recent 3D face reconstruction methods have made remarkable advancements, yet there remain huge challenges in monocular high-quality facial reflectance reconstruction. Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models. However, the lack of subject diversity poses challenges in achieving good generalization and widespread applicability. In this paper, we learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance. Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training. Our key insight is that reflectance data shares facial structures with RGB faces, which enables obtaining expressive facial prior from inexpensive RGB data thus reducing the dependency on reflectance data. We first learn a high-quality prior for facial reflectance. Specifically, we pretrain multi-domain facial feature codebooks and design a codebook fusion method to align the reflectance and RGB domains. Then, we propose an identity-conditioned swapping module that injects facial identity from the target image into the pre-trained autoencoder to modify the identity of the source reflectance image. Finally, we stitch multi-view swapped reflectance images to obtain renderable assets. Extensive experiments demonstrate that our method exhibits excellent generalization capability and achieves state-of-the-art facial reflectance reconstruction results for in-the-wild faces. Our project page is https://xingyuren.github.io/id2reflectance/.
Unicom: Universal and Compact Representation Learning for Image Retrieval
Modern image retrieval methods typically rely on fine-tuning pre-trained encoders to extract image-level descriptors. However, the most widely used models are pre-trained on ImageNet-1K with limited classes. The pre-trained feature representation is therefore not universal enough to generalize well to the diverse open-world classes. In this paper, we first cluster the large-scale LAION400M into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model. Due to the confusion of label granularity, the automatically clustered dataset inevitably contains heavy inter-class conflict. To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss. To further enhance the low-dimensional feature representation, we randomly select partial feature dimensions when calculating the similarities between embeddings and class-wise prototypes. The dual random partial selections are with respect to the class dimension and the feature dimension of the prototype matrix, making the classification conflict-robust and the feature embedding compact. Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks. The code and pre-trained models are released to facilitate future research https://github.com/deepglint/unicom.
Face Generation from Textual Features using Conditionally Trained Inputs to Generative Adversarial Networks
Generative Networks have proved to be extremely effective in image restoration and reconstruction in the past few years. Generating faces from textual descriptions is one such application where the power of generative algorithms can be used. The task of generating faces can be useful for a number of applications such as finding missing persons, identifying criminals, etc. This paper discusses a novel approach to generating human faces given a textual description regarding the facial features. We use the power of state of the art natural language processing models to convert face descriptions into learnable latent vectors which are then fed to a generative adversarial network which generates faces corresponding to those features. While this paper focuses on high level descriptions of faces only, the same approach can be tailored to generate any image based on fine grained textual features.
ARoFace: Alignment Robustness to Improve Low-Quality Face Recognition
Aiming to enhance Face Recognition (FR) on Low-Quality (LQ) inputs, recent studies suggest incorporating synthetic LQ samples into training. Although promising, the quality factors that are considered in these works are general rather than FR-specific, \eg, atmospheric turbulence, resolution, \etc. Motivated by the observation of the vulnerability of current FR models to even small Face Alignment Errors (FAE) in LQ images, we present a simple yet effective method that considers FAE as another quality factor that is tailored to FR. We seek to improve LQ FR by enhancing FR models' robustness to FAE. To this aim, we formalize the problem as a combination of differentiable spatial transformations and adversarial data augmentation in FR. We perturb the alignment of the training samples using a controllable spatial transformation and enrich the training with samples expressing FAE. We demonstrate the benefits of the proposed method by conducting evaluations on IJB-B, IJB-C, IJB-S (+4.3\% Rank1), and TinyFace (+2.63\%). https://github.com/msed-Ebrahimi/ARoFace{https://github.com/msed-Ebrahimi/ARoFace}
FACESEC: A Fine-grained Robustness Evaluation Framework for Face Recognition Systems
We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attacker's system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.
Towards Universal Object Detection by Domain Attention
Despite increasing efforts on universal representations for visual recognition, few have addressed object detection. In this paper, we develop an effective and efficient universal object detection system that is capable of working on various image domains, from human faces and traffic signs to medical CT images. Unlike multi-domain models, this universal model does not require prior knowledge of the domain of interest. This is achieved by the introduction of a new family of adaptation layers, based on the principles of squeeze and excitation, and a new domain-attention mechanism. In the proposed universal detector, all parameters and computations are shared across domains, and a single network processes all domains all the time. Experiments, on a newly established universal object detection benchmark of 11 diverse datasets, show that the proposed detector outperforms a bank of individual detectors, a multi-domain detector, and a baseline universal detector, with a 1.3x parameter increase over a single-domain baseline detector. The code and benchmark will be released at http://www.svcl.ucsd.edu/projects/universal-detection/.
Region-Aware Face Swapping
This paper presents a novel Region-Aware Face Swapping (RAFSwap) network to achieve identity-consistent harmonious high-resolution face generation in a local-global manner: 1) Local Facial Region-Aware (FRA) branch augments local identity-relevant features by introducing the Transformer to effectively model misaligned cross-scale semantic interaction. 2) Global Source Feature-Adaptive (SFA) branch further complements global identity-relevant cues for generating identity-consistent swapped faces. Besides, we propose a Face Mask Predictor (FMP) module incorporated with StyleGAN2 to predict identity-relevant soft facial masks in an unsupervised manner that is more practical for generating harmonious high-resolution faces. Abundant experiments qualitatively and quantitatively demonstrate the superiority of our method for generating more identity-consistent high-resolution swapped faces over SOTA methods, \eg, obtaining 96.70 ID retrieval that outperforms SOTA MegaFS by 5.87uparrow.
ResNeSt: Split-Attention Networks
It is well known that featuremap attention and multi-path representation are important for visual recognition. In this paper, we present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations. Our design results in a simple and unified computation block, which can be parameterized using only a few variables. Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification. In addition, ResNeSt has achieved superior transfer learning results on several public benchmarks serving as the backbone, and has been adopted by the winning entries of COCO-LVIS challenge. The source code for complete system and pretrained models are publicly available.
Age Progression/Regression by Conditional Adversarial Autoencoder
"If I provide you a face image of mine (without telling you the actual age when I took the picture) and a large amount of face images that I crawled (containing labeled faces of different ages but not necessarily paired), can you show me what I would look like when I am 80 or what I was like when I was 5?" The answer is probably a "No." Most existing face aging works attempt to learn the transformation between age groups and thus would require the paired samples as well as the labeled query image. In this paper, we look at the problem from a generative modeling perspective such that no paired samples is required. In addition, given an unlabeled image, the generative model can directly produce the image with desired age attribute. We propose a conditional adversarial autoencoder (CAAE) that learns a face manifold, traversing on which smooth age progression and regression can be realized simultaneously. In CAAE, the face is first mapped to a latent vector through a convolutional encoder, and then the vector is projected to the face manifold conditional on age through a deconvolutional generator. The latent vector preserves personalized face features (i.e., personality) and the age condition controls progression vs. regression. Two adversarial networks are imposed on the encoder and generator, respectively, forcing to generate more photo-realistic faces. Experimental results demonstrate the appealing performance and flexibility of the proposed framework by comparing with the state-of-the-art and ground truth.
Circle Loss: A Unified Perspective of Pair Similarity Optimization
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity s_p and minimize the between-class similarity s_n. We find a majority of loss functions, including the triplet loss and the softmax plus cross-entropy loss, embed s_n and s_p into similarity pairs and seek to reduce (s_n-s_p). Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing (s_n-s_p). Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
Privacy-Preserving Face Recognition Using Random Frequency Components
The ubiquitous use of face recognition has sparked increasing privacy concerns, as unauthorized access to sensitive face images could compromise the information of individuals. This paper presents an in-depth study of the privacy protection of face images' visual information and against recovery. Drawing on the perceptual disparity between humans and models, we propose to conceal visual information by pruning human-perceivable low-frequency components. For impeding recovery, we first elucidate the seeming paradox between reducing model-exploitable information and retaining high recognition accuracy. Based on recent theoretical insights and our observation on model attention, we propose a solution to the dilemma, by advocating for the training and inference of recognition models on randomly selected frequency components. We distill our findings into a novel privacy-preserving face recognition method, PartialFace. Extensive experiments demonstrate that PartialFace effectively balances privacy protection goals and recognition accuracy. Code is available at: https://github.com/Tencent/TFace.
Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
Inserting Anybody in Diffusion Models via Celeb Basis
Exquisite demand exists for customizing the pretrained large text-to-image model, e.g., Stable Diffusion, to generate innovative concepts, such as the users themselves. However, the newly-added concept from previous customization methods often shows weaker combination abilities than the original ones even given several images during training. We thus propose a new personalization method that allows for the seamless integration of a unique individual into the pre-trained diffusion model using just one facial photograph and only 1024 learnable parameters under 3 minutes. So as we can effortlessly generate stunning images of this person in any pose or position, interacting with anyone and doing anything imaginable from text prompts. To achieve this, we first analyze and build a well-defined celeb basis from the embedding space of the pre-trained large text encoder. Then, given one facial photo as the target identity, we generate its own embedding by optimizing the weight of this basis and locking all other parameters. Empowered by the proposed celeb basis, the new identity in our customized model showcases a better concept combination ability than previous personalization methods. Besides, our model can also learn several new identities at once and interact with each other where the previous customization model fails to. The code will be released.
Recognizability Embedding Enhancement for Very Low-Resolution Face Recognition and Quality Estimation
Very low-resolution face recognition (VLRFR) poses unique challenges, such as tiny regions of interest and poor resolution due to extreme standoff distance or wide viewing angle of the acquisition devices. In this paper, we study principled approaches to elevate the recognizability of a face in the embedding space instead of the visual quality. We first formulate a robust learning-based face recognizability measure, namely recognizability index (RI), based on two criteria: (i) proximity of each face embedding against the unrecognizable faces cluster center and (ii) closeness of each face embedding against its positive and negative class prototypes. We then devise an index diversion loss to push the hard-to-recognize face embedding with low RI away from unrecognizable faces cluster to boost the RI, which reflects better recognizability. Additionally, a perceptibility attention mechanism is introduced to attend to the most recognizable face regions, which offers better explanatory and discriminative traits for embedding learning. Our proposed model is trained end-to-end and simultaneously serves recognizability-aware embedding learning and face quality estimation. To address VLRFR, our extensive evaluations on three challenging low-resolution datasets and face quality assessment demonstrate the superiority of the proposed model over the state-of-the-art methods.
RetinaFace: Single-stage Dense Face Localisation in the Wild
Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning. Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a self-supervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set, RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their results in face verification (TAR=89.59% for FAR=1e-6). (5) By employing light-weight backbone networks, RetinaFace can run real-time on a single CPU core for a VGA-resolution image. Extra annotations and code have been made available at: https://github.com/deepinsight/insightface/tree/master/RetinaFace.
CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search
The success of deep learning based face recognition systems has given rise to serious privacy concerns due to their ability to enable unauthorized tracking of users in the digital world. Existing methods for enhancing privacy fail to generate naturalistic images that can protect facial privacy without compromising user experience. We propose a novel two-step approach for facial privacy protection that relies on finding adversarial latent codes in the low-dimensional manifold of a pretrained generative model. The first step inverts the given face image into the latent space and finetunes the generative model to achieve an accurate reconstruction of the given image from its latent code. This step produces a good initialization, aiding the generation of high-quality faces that resemble the given identity. Subsequently, user-defined makeup text prompts and identity-preserving regularization are used to guide the search for adversarial codes in the latent space. Extensive experiments demonstrate that faces generated by our approach have stronger black-box transferability with an absolute gain of 12.06% over the state-of-the-art facial privacy protection approach under the face verification task. Finally, we demonstrate the effectiveness of the proposed approach for commercial face recognition systems. Our code is available at https://github.com/fahadshamshad/Clip2Protect.
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition
We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition). The code and models are available at https://github.com/DingXiaoH/RepMLP.
Simple Open-Vocabulary Object Detection with Vision Transformers
Combining simple architectures with large-scale pre-training has led to massive improvements in image classification. For object detection, pre-training and scaling approaches are less well established, especially in the long-tailed and open-vocabulary setting, where training data is relatively scarce. In this paper, we propose a strong recipe for transferring image-text models to open-vocabulary object detection. We use a standard Vision Transformer architecture with minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling properties of this setup shows that increasing image-level pre-training and model size yield consistent improvements on the downstream detection task. We provide the adaptation strategies and regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection. Code and models are available on GitHub.
How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)
This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a very large yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2D facial landmark datasets. (b) We create a guided by 2D landmarks network which converts 2D landmark annotations to 3D and unifies all existing datasets, leading to the creation of LS3D-W, the largest and most challenging 3D facial landmark dataset to date ~230,000 images. (c) Following that, we train a neural network for 3D face alignment and evaluate it on the newly introduced LS3D-W. (d) We further look into the effect of all "traditional" factors affecting face alignment performance like large pose, initialization and resolution, and introduce a "new" one, namely the size of the network. (e) We show that both 2D and 3D face alignment networks achieve performance of remarkable accuracy which is probably close to saturating the datasets used. Training and testing code as well as the dataset can be downloaded from https://www.adrianbulat.com/face-alignment/
FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping
In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identityn transfer, while having significantly better pose preservation than most of the previous methods.
Towards Measuring Fairness in AI: the Casual Conversations Dataset
This paper introduces a novel dataset to help researchers evaluate their computer vision and audio models for accuracy across a diverse set of age, genders, apparent skin tones and ambient lighting conditions. Our dataset is composed of 3,011 subjects and contains over 45,000 videos, with an average of 15 videos per person. The videos were recorded in multiple U.S. states with a diverse set of adults in various age, gender and apparent skin tone groups. A key feature is that each subject agreed to participate for their likenesses to be used. Additionally, our age and gender annotations are provided by the subjects themselves. A group of trained annotators labeled the subjects' apparent skin tone using the Fitzpatrick skin type scale. Moreover, annotations for videos recorded in low ambient lighting are also provided. As an application to measure robustness of predictions across certain attributes, we provide a comprehensive study on the top five winners of the DeepFake Detection Challenge (DFDC). Experimental evaluation shows that the winning models are less performant on some specific groups of people, such as subjects with darker skin tones and thus may not generalize to all people. In addition, we also evaluate the state-of-the-art apparent age and gender classification methods. Our experiments provides a thorough analysis on these models in terms of fair treatment of people from various backgrounds.
Fine-Grained Head Pose Estimation Without Keypoints
Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models.
Improved Visual Fine-tuning with Natural Language Supervision
Fine-tuning a visual pre-trained model can leverage the semantic information from large-scale pre-training data and mitigate the over-fitting problem on downstream vision tasks with limited training examples. While the problem of catastrophic forgetting in pre-trained backbone has been extensively studied for fine-tuning, its potential bias from the corresponding pre-training task and data, attracts less attention. In this work, we investigate this problem by demonstrating that the obtained classifier after fine-tuning will be close to that induced by the pre-trained model. To reduce the bias in the classifier effectively, we introduce a reference distribution obtained from a fixed text classifier, which can help regularize the learned vision classifier. The proposed method, Text Supervised fine-tuning (TeS), is evaluated with diverse pre-trained vision models including ResNet and ViT, and text encoders including BERT and CLIP, on 11 downstream tasks. The consistent improvement with a clear margin over distinct scenarios confirms the effectiveness of our proposal. Code is available at https://github.com/idstcv/TeS.
DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
We present our on-going effort of constructing a large-scale benchmark for face forgery detection. The first version of this benchmark, DeeperForensics-1.0, represents the largest face forgery detection dataset by far, with 60,000 videos constituted by a total of 17.6 million frames, 10 times larger than existing datasets of the same kind. Extensive real-world perturbations are applied to obtain a more challenging benchmark of larger scale and higher diversity. All source videos in DeeperForensics-1.0 are carefully collected, and fake videos are generated by a newly proposed end-to-end face swapping framework. The quality of generated videos outperforms those in existing datasets, validated by user studies. The benchmark features a hidden test set, which contains manipulated videos achieving high deceptive scores in human evaluations. We further contribute a comprehensive study that evaluates five representative detection baselines and make a thorough analysis of different settings.
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.
Towards Metrical Reconstruction of Human Faces
Face reconstruction and tracking is a building block of numerous applications in AR/VR, human-machine interaction, as well as medical applications. Most of these applications rely on a metrically correct prediction of the shape, especially, when the reconstructed subject is put into a metrical context (i.e., when there is a reference object of known size). A metrical reconstruction is also needed for any application that measures distances and dimensions of the subject (e.g., to virtually fit a glasses frame). State-of-the-art methods for face reconstruction from a single image are trained on large 2D image datasets in a self-supervised fashion. However, due to the nature of a perspective projection they are not able to reconstruct the actual face dimensions, and even predicting the average human face outperforms some of these methods in a metrical sense. To learn the actual shape of a face, we argue for a supervised training scheme. Since there exists no large-scale 3D dataset for this task, we annotated and unified small- and medium-scale databases. The resulting unified dataset is still a medium-scale dataset with more than 2k identities and training purely on it would lead to overfitting. To this end, we take advantage of a face recognition network pretrained on a large-scale 2D image dataset, which provides distinct features for different faces and is robust to expression, illumination, and camera changes. Using these features, we train our face shape estimator in a supervised fashion, inheriting the robustness and generalization of the face recognition network. Our method, which we call MICA (MetrIC fAce), outperforms the state-of-the-art reconstruction methods by a large margin, both on current non-metric benchmarks as well as on our metric benchmarks (15% and 24% lower average error on NoW, respectively).
Internet Explorer: Targeted Representation Learning on the Open Web
Modern vision models typically rely on fine-tuning general-purpose models pre-trained on large, static datasets. These general-purpose models only capture the knowledge within their pre-training datasets, which are tiny, out-of-date snapshots of the Internet -- where billions of images are uploaded each day. We suggest an alternate approach: rather than hoping our static datasets transfer to our desired tasks after large-scale pre-training, we propose dynamically utilizing the Internet to quickly train a small-scale model that does extremely well on the task at hand. Our approach, called Internet Explorer, explores the web in a self-supervised manner to progressively find relevant examples that improve performance on a desired target dataset. It cycles between searching for images on the Internet with text queries, self-supervised training on downloaded images, determining which images were useful, and prioritizing what to search for next. We evaluate Internet Explorer across several datasets and show that it outperforms or matches CLIP oracle performance by using just a single GPU desktop to actively query the Internet for 30--40 hours. Results, visualizations, and videos at https://internet-explorer-ssl.github.io/
Pair-VPR: Place-Aware Pre-training and Contrastive Pair Classification for Visual Place Recognition with Vision Transformers
In this work we propose a novel joint training method for Visual Place Recognition (VPR), which simultaneously learns a global descriptor and a pair classifier for re-ranking. The pair classifier can predict whether a given pair of images are from the same place or not. The network only comprises Vision Transformer components for both the encoder and the pair classifier, and both components are trained using their respective class tokens. In existing VPR methods, typically the network is initialized using pre-trained weights from a generic image dataset such as ImageNet. In this work we propose an alternative pre-training strategy, by using Siamese Masked Image Modelling as a pre-training task. We propose a Place-aware image sampling procedure from a collection of large VPR datasets for pre-training our model, to learn visual features tuned specifically for VPR. By re-using the Mask Image Modelling encoder and decoder weights in the second stage of training, Pair-VPR can achieve state-of-the-art VPR performance across five benchmark datasets with a ViT-B encoder, along with further improvements in localization recall with larger encoders. The Pair-VPR website is: https://csiro-robotics.github.io/Pair-VPR.
Open-domain Visual Entity Recognition: Towards Recognizing Millions of Wikipedia Entities
Large-scale multi-modal pre-training models such as CLIP and PaLI exhibit strong generalization on various visual domains and tasks. However, existing image classification benchmarks often evaluate recognition on a specific domain (e.g., outdoor images) or a specific task (e.g., classifying plant species), which falls short of evaluating whether pre-trained foundational models are universal visual recognizers. To address this, we formally present the task of Open-domain Visual Entity recognitioN (OVEN), where a model need to link an image onto a Wikipedia entity with respect to a text query. We construct OVEN-Wiki by re-purposing 14 existing datasets with all labels grounded onto one single label space: Wikipedia entities. OVEN challenges models to select among six million possible Wikipedia entities, making it a general visual recognition benchmark with the largest number of labels. Our study on state-of-the-art pre-trained models reveals large headroom in generalizing to the massive-scale label space. We show that a PaLI-based auto-regressive visual recognition model performs surprisingly well, even on Wikipedia entities that have never been seen during fine-tuning. We also find existing pretrained models yield different strengths: while PaLI-based models obtain higher overall performance, CLIP-based models are better at recognizing tail entities.
Rethinking Nearest Neighbors for Visual Classification
Neural network classifiers have become the de-facto choice for current "pre-train then fine-tune" paradigms of visual classification. In this paper, we investigate k-Nearest-Neighbor (k-NN) classifiers, a classical model-free learning method from the pre-deep learning era, as an augmentation to modern neural network based approaches. As a lazy learning method, k-NN simply aggregates the distance between the test image and top-k neighbors in a training set. We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps: (1) Leverage k-NN predicted probabilities as indications for easy vs. hard examples during training. (2) Linearly interpolate the k-NN predicted distribution with that of the augmented classifier. Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration with additional insights: (1) k-NN achieves competitive results, sometimes even outperforming a standard linear classifier. (2) Incorporating k-NN is especially beneficial for tasks where parametric classifiers perform poorly and / or in low-data regimes. We hope these discoveries will encourage people to rethink the role of pre-deep learning, classical methods in computer vision. Our code is available at: https://github.com/KMnP/nn-revisit.
Practical No-box Adversarial Attacks against DNNs
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
Speech2Face: Learning the Face Behind a Voice
How much can we infer about a person's looks from the way they speak? In this paper, we study the task of reconstructing a facial image of a person from a short audio recording of that person speaking. We design and train a deep neural network to perform this task using millions of natural Internet/YouTube videos of people speaking. During training, our model learns voice-face correlations that allow it to produce images that capture various physical attributes of the speakers such as age, gender and ethnicity. This is done in a self-supervised manner, by utilizing the natural co-occurrence of faces and speech in Internet videos, without the need to model attributes explicitly. We evaluate and numerically quantify how--and in what manner--our Speech2Face reconstructions, obtained directly from audio, resemble the true face images of the speakers.
Should VLMs be Pre-trained with Image Data?
Pre-trained LLMs that are further trained with image data perform well on vision-language tasks. While adding images during a second training phase effectively unlocks this capability, it is unclear how much of a gain or loss this two-step pipeline gives over VLMs which integrate images earlier into the training process. To investigate this, we train models spanning various datasets, scales, image-text ratios, and amount of pre-training done before introducing vision tokens. We then fine-tune these models and evaluate their downstream performance on a suite of vision-language and text-only tasks. We find that pre-training with a mixture of image and text data allows models to perform better on vision-language tasks while maintaining strong performance on text-only evaluations. On an average of 6 diverse tasks, we find that for a 1B model, introducing visual tokens 80% of the way through pre-training results in a 2% average improvement over introducing visual tokens to a fully pre-trained model.
Facial Expressions Recognition with Convolutional Neural Networks
Over the centuries, humans have developed and acquired a number of ways to communicate. But hardly any of them can be as natural and instinctive as facial expressions. On the other hand, neural networks have taken the world by storm. And no surprises, that the area of Computer Vision and the problem of facial expressions recognitions hasn't remained untouched. Although a wide range of techniques have been applied, achieving extremely high accuracies and preparing highly robust FER systems still remains a challenge due to heterogeneous details in human faces. In this paper, we will be deep diving into implementing a system for recognition of facial expressions (FER) by leveraging neural networks, and more specifically, Convolutional Neural Networks (CNNs). We adopt the fundamental concepts of deep learning and computer vision with various architectures, fine-tune it's hyperparameters and experiment with various optimization methods and demonstrate a state-of-the-art single-network-accuracy of 70.10% on the FER2013 dataset without using any additional training data.
Self-supervised Learning of Geometrically Stable Features Through Probabilistic Introspection
Self-supervision can dramatically cut back the amount of manually-labelled data required to train deep neural networks. While self-supervision has usually been considered for tasks such as image classification, in this paper we aim at extending it to geometry-oriented tasks such as semantic matching and part detection. We do so by building on several recent ideas in unsupervised landmark detection. Our approach learns dense distinctive visual descriptors from an unlabelled dataset of images using synthetic image transformations. It does so by means of a robust probabilistic formulation that can introspectively determine which image regions are likely to result in stable image matching. We show empirically that a network pre-trained in this manner requires significantly less supervision to learn semantic object parts compared to numerous pre-training alternatives. We also show that the pre-trained representation is excellent for semantic object matching.
Personalized Face Inpainting with Diffusion Models by Parallel Visual Attention
Face inpainting is important in various applications, such as photo restoration, image editing, and virtual reality. Despite the significant advances in face generative models, ensuring that a person's unique facial identity is maintained during the inpainting process is still an elusive goal. Current state-of-the-art techniques, exemplified by MyStyle, necessitate resource-intensive fine-tuning and a substantial number of images for each new identity. Furthermore, existing methods often fall short in accommodating user-specified semantic attributes, such as beard or expression. To improve inpainting results, and reduce the computational complexity during inference, this paper proposes the use of Parallel Visual Attention (PVA) in conjunction with diffusion models. Specifically, we insert parallel attention matrices to each cross-attention module in the denoising network, which attends to features extracted from reference images by an identity encoder. We train the added attention modules and identity encoder on CelebAHQ-IDI, a dataset proposed for identity-preserving face inpainting. Experiments demonstrate that PVA attains unparalleled identity resemblance in both face inpainting and face inpainting with language guidance tasks, in comparison to various benchmarks, including MyStyle, Paint by Example, and Custom Diffusion. Our findings reveal that PVA ensures good identity preservation while offering effective language-controllability. Additionally, in contrast to Custom Diffusion, PVA requires just 40 fine-tuning steps for each new identity, which translates to a significant speed increase of over 20 times.
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation
We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.
InstantID: Zero-shot Identity-Preserving Generation in Seconds
There has been significant progress in personalized image synthesis with methods such as Textual Inversion, DreamBooth, and LoRA. Yet, their real-world applicability is hindered by high storage demands, lengthy fine-tuning processes, and the need for multiple reference images. Conversely, existing ID embedding-based methods, while requiring only a single forward inference, face challenges: they either necessitate extensive fine-tuning across numerous model parameters, lack compatibility with community pre-trained models, or fail to maintain high face fidelity. Addressing these limitations, we introduce InstantID, a powerful diffusion model-based solution. Our plug-and-play module adeptly handles image personalization in various styles using just a single facial image, while ensuring high fidelity. To achieve this, we design a novel IdentityNet by imposing strong semantic and weak spatial conditions, integrating facial and landmark images with textual prompts to steer the image generation. InstantID demonstrates exceptional performance and efficiency, proving highly beneficial in real-world applications where identity preservation is paramount. Moreover, our work seamlessly integrates with popular pre-trained text-to-image diffusion models like SD1.5 and SDXL, serving as an adaptable plugin. Our codes and pre-trained checkpoints will be available at https://github.com/InstantID/InstantID.
Masked Momentum Contrastive Learning for Zero-shot Semantic Understanding
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data. In the realm of computer vision, pretrained vision transformers (ViTs) have played a pivotal role in advancing transfer learning. Nonetheless, the escalating cost of finetuning these large models has posed a challenge due to the explosion of model size. This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks, obviating the need for finetuning, with the intention of emulating human-like capabilities in generalisation and recognition of unseen objects. To this end, we propose an evaluation protocol for zero-shot segmentation based on a prompting patch. Given a point on the target object as a prompt, the algorithm calculates the similarity map between the selected patch and other patches, upon that, a simple thresholding is applied to segment the target. Another evaluation is intra-object and inter-object similarity to gauge discriminatory ability of SSP ViTs. Insights from zero-shot segmentation from prompting and discriminatory abilities of SSP led to the design of a simple SSP approach, termed MMC. This approaches combines Masked image modelling for encouraging similarity of local features, Momentum based self-distillation for transferring semantics from global to local features, and global Contrast for promoting semantics of global features, to enhance discriminative representations of SSP ViTs. Consequently, our proposed method significantly reduces the overlap of intra-object and inter-object similarities, thereby facilitating effective object segmentation within an image. Our experiments reveal that MMC delivers top-tier results in zero-shot semantic segmentation across various datasets.
On the Surprising Effectiveness of Attention Transfer for Vision Transformers
Conventional wisdom suggests that pre-training Vision Transformers (ViT) improves downstream performance by learning useful representations. Is this actually true? We investigate this question and find that the features and representations learned during pre-training are not essential. Surprisingly, using only the attention patterns from pre-training (i.e., guiding how information flows between tokens) is sufficient for models to learn high quality features from scratch and achieve comparable downstream performance. We show this by introducing a simple method called attention transfer, where only the attention patterns from a pre-trained teacher ViT are transferred to a student, either by copying or distilling the attention maps. Since attention transfer lets the student learn its own features, ensembling it with a fine-tuned teacher also further improves accuracy on ImageNet. We systematically study various aspects of our findings on the sufficiency of attention maps, including distribution shift settings where they underperform fine-tuning. We hope our exploration provides a better understanding of what pre-training accomplishes and leads to a useful alternative to the standard practice of fine-tuning
CNN Features off-the-shelf: an Astounding Baseline for Recognition
Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.
Heuristic Vision Pre-Training with Self-Supervised and Supervised Multi-Task Learning
To mimic human vision with the way of recognizing the diverse and open world, foundation vision models are much critical. While recent techniques of self-supervised learning show the promising potentiality of this mission, we argue that signals from labelled data are also important for common-sense recognition, and properly chosen pre-text tasks can facilitate the efficiency of vision representation learning. To this end, we propose a novel pre-training framework by adopting both self-supervised and supervised visual pre-text tasks in a multi-task manner. Specifically, given an image, we take a heuristic way by considering its intrinsic style properties, inside objects with their locations and correlations, and how it looks like in 3D space for basic visual understanding. However, large-scale object bounding boxes and correlations are usually hard to achieve. Alternatively, we develop a hybrid method by leveraging both multi-label classification and self-supervised learning. On the one hand, under the multi-label supervision, the pre-trained model can explore the detailed information of an image, e.g., image types, objects, and part of semantic relations. On the other hand, self-supervised learning tasks, with respect to Masked Image Modeling (MIM) and contrastive learning, can help the model learn pixel details and patch correlations. Results show that our pre-trained models can deliver results on par with or better than state-of-the-art (SOTA) results on multiple visual tasks. For example, with a vanilla Swin-B backbone, we achieve 85.3\% top-1 accuracy on ImageNet-1K classification, 47.9 box AP on COCO object detection for Mask R-CNN, and 50.6 mIoU on ADE-20K semantic segmentation when using Upernet. The performance shows the ability of our vision foundation model to serve general purpose vision tasks.
Masked Feature Prediction for Self-Supervised Visual Pre-Training
We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can learn abundant visual knowledge and drive large-scale Transformer-based models. Without using extra model weights or supervision, MaskFeat pre-trained on unlabeled videos achieves unprecedented results of 86.7% with MViT-L on Kinetics-400, 88.3% on Kinetics-600, 80.4% on Kinetics-700, 39.8 mAP on AVA, and 75.0% on SSv2. MaskFeat further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive results on ImageNet.
SiT: Self-supervised vIsion Transformer
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: https://github.com/Sara-Ahmed/SiT.
QuAVF: Quality-aware Audio-Visual Fusion for Ego4D Talking to Me Challenge
This technical report describes our QuAVF@NTU-NVIDIA submission to the Ego4D Talking to Me (TTM) Challenge 2023. Based on the observation from the TTM task and the provided dataset, we propose to use two separate models to process the input videos and audio. By doing so, we can utilize all the labeled training data, including those without bounding box labels. Furthermore, we leverage the face quality score from a facial landmark prediction model for filtering noisy face input data. The face quality score is also employed in our proposed quality-aware fusion for integrating the results from two branches. With the simple architecture design, our model achieves 67.4% mean average precision (mAP) on the test set, which ranks first on the leaderboard and outperforms the baseline method by a large margin. Code is available at: https://github.com/hsi-che-lin/Ego4D-QuAVF-TTM-CVPR23
PetFace: A Large-Scale Dataset and Benchmark for Animal Identification
Automated animal face identification plays a crucial role in the monitoring of behaviors, conducting of surveys, and finding of lost animals. Despite the advancements in human face identification, the lack of datasets and benchmarks in the animal domain has impeded progress. In this paper, we introduce the PetFace dataset, a comprehensive resource for animal face identification encompassing 257,484 unique individuals across 13 animal families and 319 breed categories, including both experimental and pet animals. This large-scale collection of individuals facilitates the investigation of unseen animal face verification, an area that has not been sufficiently explored in existing datasets due to the limited number of individuals. Moreover, PetFace also has fine-grained annotations such as sex, breed, color, and pattern. We provide multiple benchmarks including re-identification for seen individuals and verification for unseen individuals. The models trained on our dataset outperform those trained on prior datasets, even for detailed breed variations and unseen animal families. Our result also indicates that there is some room to improve the performance of integrated identification on multiple animal families. We hope the PetFace dataset will facilitate animal face identification and encourage the development of non-invasive animal automatic identification methods.
Recent Advances in Zero-shot Recognition
With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.
Evading Forensic Classifiers with Attribute-Conditioned Adversarial Faces
The ability of generative models to produce highly realistic synthetic face images has raised security and ethical concerns. As a first line of defense against such fake faces, deep learning based forensic classifiers have been developed. While these forensic models can detect whether a face image is synthetic or real with high accuracy, they are also vulnerable to adversarial attacks. Although such attacks can be highly successful in evading detection by forensic classifiers, they introduce visible noise patterns that are detectable through careful human scrutiny. Additionally, these attacks assume access to the target model(s) which may not always be true. Attempts have been made to directly perturb the latent space of GANs to produce adversarial fake faces that can circumvent forensic classifiers. In this work, we go one step further and show that it is possible to successfully generate adversarial fake faces with a specified set of attributes (e.g., hair color, eye size, race, gender, etc.). To achieve this goal, we leverage the state-of-the-art generative model StyleGAN with disentangled representations, which enables a range of modifications without leaving the manifold of natural images. We propose a framework to search for adversarial latent codes within the feature space of StyleGAN, where the search can be guided either by a text prompt or a reference image. We also propose a meta-learning based optimization strategy to achieve transferable performance on unknown target models. Extensive experiments demonstrate that the proposed approach can produce semantically manipulated adversarial fake faces, which are true to the specified attribute set and can successfully fool forensic face classifiers, while remaining undetectable by humans. Code: https://github.com/koushiksrivats/face_attribute_attack.
xCos: An Explainable Cosine Metric for Face Verification Task
We study the XAI (explainable AI) on the face recognition task, particularly the face verification here. Face verification is a crucial task in recent days and it has been deployed to plenty of applications, such as access control, surveillance, and automatic personal log-on for mobile devices. With the increasing amount of data, deep convolutional neural networks can achieve very high accuracy for the face verification task. Beyond exceptional performances, deep face verification models need more interpretability so that we can trust the results they generate. In this paper, we propose a novel similarity metric, called explainable cosine (xCos), that comes with a learnable module that can be plugged into most of the verification models to provide meaningful explanations. With the help of xCos, we can see which parts of the two input faces are similar, where the model pays its attention to, and how the local similarities are weighted to form the output xCos score. We demonstrate the effectiveness of our proposed method on LFW and various competitive benchmarks, resulting in not only providing novel and desiring model interpretability for face verification but also ensuring the accuracy as plugging into existing face recognition models.
Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.
Unsupervised Pre-Training of Image Features on Non-Curated Data
Pre-training general-purpose visual features with convolutional neural networks without relying on annotations is a challenging and important task. Most recent efforts in unsupervised feature learning have focused on either small or highly curated datasets like ImageNet, whereas using uncurated raw datasets was found to decrease the feature quality when evaluated on a transfer task. Our goal is to bridge the performance gap between unsupervised methods trained on curated data, which are costly to obtain, and massive raw datasets that are easily available. To that effect, we propose a new unsupervised approach which leverages self-supervision and clustering to capture complementary statistics from large-scale data. We validate our approach on 96 million images from YFCC100M, achieving state-of-the-art results among unsupervised methods on standard benchmarks, which confirms the potential of unsupervised learning when only uncurated data are available. We also show that pre-training a supervised VGG-16 with our method achieves 74.9% top-1 classification accuracy on the validation set of ImageNet, which is an improvement of +0.8% over the same network trained from scratch. Our code is available at https://github.com/facebookresearch/DeeperCluster.
Facial Landmark Points Detection Using Knowledge Distillation-Based Neural Networks
Facial landmark detection is a vital step for numerous facial image analysis applications. Although some deep learning-based methods have achieved good performances in this task, they are often not suitable for running on mobile devices. Such methods rely on networks with many parameters, which makes the training and inference time-consuming. Training lightweight neural networks such as MobileNets are often challenging, and the models might have low accuracy. Inspired by knowledge distillation (KD), this paper presents a novel loss function to train a lightweight Student network (e.g., MobileNetV2) for facial landmark detection. We use two Teacher networks, a Tolerant-Teacher and a Tough-Teacher in conjunction with the Student network. The Tolerant-Teacher is trained using Soft-landmarks created by active shape models, while the Tough-Teacher is trained using the ground truth (aka Hard-landmarks) landmark points. To utilize the facial landmark points predicted by the Teacher networks, we define an Assistive Loss (ALoss) for each Teacher network. Moreover, we define a loss function called KD-Loss that utilizes the facial landmark points predicted by the two pre-trained Teacher networks (EfficientNet-b3) to guide the lightweight Student network towards predicting the Hard-landmarks. Our experimental results on three challenging facial datasets show that the proposed architecture will result in a better-trained Student network that can extract facial landmark points with high accuracy.
Reinforced Disentanglement for Face Swapping without Skip Connection
The SOTA face swap models still suffer the problem of either target identity (i.e., shape) being leaked or the target non-identity attributes (i.e., background, hair) failing to be fully preserved in the final results. We show that this insufficient disentanglement is caused by two flawed designs that were commonly adopted in prior models: (1) counting on only one compressed encoder to represent both the semantic-level non-identity facial attributes(i.e., pose) and the pixel-level non-facial region details, which is contradictory to satisfy at the same time; (2) highly relying on long skip-connections between the encoder and the final generator, leaking a certain amount of target face identity into the result. To fix them, we introduce a new face swap framework called 'WSC-swap' that gets rid of skip connections and uses two target encoders to respectively capture the pixel-level non-facial region attributes and the semantic non-identity attributes in the face region. To further reinforce the disentanglement learning for the target encoder, we employ both identity removal loss via adversarial training (i.e., GAN) and the non-identity preservation loss via prior 3DMM models like [11]. Extensive experiments on both FaceForensics++ and CelebA-HQ show that our results significantly outperform previous works on a rich set of metrics, including one novel metric for measuring identity consistency that was completely neglected before.
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether this observation can be extended beyond the conventional domain of supervised learning: Can we learn a good feature representation that captures apparent similarity among instances, instead of classes, by merely asking the feature to be discriminative of individual instances? We formulate this intuition as a non-parametric classification problem at the instance-level, and use noise-contrastive estimation to tackle the computational challenges imposed by the large number of instance classes. Our experimental results demonstrate that, under unsupervised learning settings, our method surpasses the state-of-the-art on ImageNet classification by a large margin. Our method is also remarkable for consistently improving test performance with more training data and better network architectures. By fine-tuning the learned feature, we further obtain competitive results for semi-supervised learning and object detection tasks. Our non-parametric model is highly compact: With 128 features per image, our method requires only 600MB storage for a million images, enabling fast nearest neighbour retrieval at the run time.
A Style-Based Generator Architecture for Generative Adversarial Networks
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
The Deepfake Detection Challenge (DFDC) Preview Dataset
In this paper, we introduce a preview of the Deepfakes Detection Challenge (DFDC) dataset consisting of 5K videos featuring two facial modification algorithms. A data collection campaign has been carried out where participating actors have entered into an agreement to the use and manipulation of their likenesses in our creation of the dataset. Diversity in several axes (gender, skin-tone, age, etc.) has been considered and actors recorded videos with arbitrary backgrounds thus bringing visual variability. Finally, a set of specific metrics to evaluate the performance have been defined and two existing models for detecting deepfakes have been tested to provide a reference performance baseline. The DFDC dataset preview can be downloaded at: deepfakedetectionchallenge.ai
MFIM: Megapixel Facial Identity Manipulation
Face swapping is a task that changes a facial identity of a given image to that of another person. In this work, we propose a novel face-swapping framework called Megapixel Facial Identity Manipulation (MFIM). The face-swapping model should achieve two goals. First, it should be able to generate a high-quality image. We argue that a model which is proficient in generating a megapixel image can achieve this goal. However, generating a megapixel image is generally difficult without careful model design. Therefore, our model exploits pretrained StyleGAN in the manner of GAN-inversion to effectively generate a megapixel image. Second, it should be able to effectively transform the identity of a given image. Specifically, it should be able to actively transform ID attributes (e.g., face shape and eyes) of a given image into those of another person, while preserving ID-irrelevant attributes (e.g., pose and expression). To achieve this goal, we exploit 3DMM that can capture various facial attributes. Specifically, we explicitly supervise our model to generate a face-swapped image with the desirable attributes using 3DMM. We show that our model achieves state-of-the-art performance through extensive experiments. Furthermore, we propose a new operation called ID mixing, which creates a new identity by semantically mixing the identities of several people. It allows the user to customize the new identity.
Inferring Offensiveness In Images From Natural Language Supervision
Probing or fine-tuning (large-scale) pre-trained models results in state-of-the-art performance for many NLP tasks and, more recently, even for computer vision tasks when combined with image data. Unfortunately, these approaches also entail severe risks. In particular, large image datasets automatically scraped from the web may contain derogatory terms as categories and offensive images, and may also underrepresent specific classes. Consequently, there is an urgent need to carefully document datasets and curate their content. Unfortunately, this process is tedious and error-prone. We show that pre-trained transformers themselves provide a methodology for the automated curation of large-scale vision datasets. Based on human-annotated examples and the implicit knowledge of a CLIP based model, we demonstrate that one can select relevant prompts for rating the offensiveness of an image. In addition to e.g. privacy violation and pornographic content previously identified in ImageNet, we demonstrate that our approach identifies further inappropriate and potentially offensive content.
InstantBooth: Personalized Text-to-Image Generation without Test-Time Finetuning
Recent advances in personalized image generation allow a pre-trained text-to-image model to learn a new concept from a set of images. However, existing personalization approaches usually require heavy test-time finetuning for each concept, which is time-consuming and difficult to scale. We propose InstantBooth, a novel approach built upon pre-trained text-to-image models that enables instant text-guided image personalization without any test-time finetuning. We achieve this with several major components. First, we learn the general concept of the input images by converting them to a textual token with a learnable image encoder. Second, to keep the fine details of the identity, we learn rich visual feature representation by introducing a few adapter layers to the pre-trained model. We train our components only on text-image pairs without using paired images of the same concept. Compared to test-time finetuning-based methods like DreamBooth and Textual-Inversion, our model can generate competitive results on unseen concepts concerning language-image alignment, image fidelity, and identity preservation while being 100 times faster.
MARLIN: Masked Autoencoder for facial video Representation LearnINg
This paper proposes a self-supervised approach to learn universal facial representations from videos, that can transfer across a variety of facial analysis tasks such as Facial Attribute Recognition (FAR), Facial Expression Recognition (FER), DeepFake Detection (DFD), and Lip Synchronization (LS). Our proposed framework, named MARLIN, is a facial video masked autoencoder, that learns highly robust and generic facial embeddings from abundantly available non-annotated web crawled facial videos. As a challenging auxiliary task, MARLIN reconstructs the spatio-temporal details of the face from the densely masked facial regions which mainly include eyes, nose, mouth, lips, and skin to capture local and global aspects that in turn help in encoding generic and transferable features. Through a variety of experiments on diverse downstream tasks, we demonstrate MARLIN to be an excellent facial video encoder as well as feature extractor, that performs consistently well across a variety of downstream tasks including FAR (1.13% gain over supervised benchmark), FER (2.64% gain over unsupervised benchmark), DFD (1.86% gain over unsupervised benchmark), LS (29.36% gain for Frechet Inception Distance), and even in low data regime. Our code and models are available at https://github.com/ControlNet/MARLIN .
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
While there has been remarkable progress in the performance of visual recognition algorithms, the state-of-the-art models tend to be exceptionally data-hungry. Large labeled training datasets, expensive and tedious to produce, are required to optimize millions of parameters in deep network models. Lagging behind the growth in model capacity, the available datasets are quickly becoming outdated in terms of size and density. To circumvent this bottleneck, we propose to amplify human effort through a partially automated labeling scheme, leveraging deep learning with humans in the loop. Starting from a large set of candidate images for each category, we iteratively sample a subset, ask people to label them, classify the others with a trained model, split the set into positives, negatives, and unlabeled based on the classification confidence, and then iterate with the unlabeled set. To assess the effectiveness of this cascading procedure and enable further progress in visual recognition research, we construct a new image dataset, LSUN. It contains around one million labeled images for each of 10 scene categories and 20 object categories. We experiment with training popular convolutional networks and find that they achieve substantial performance gains when trained on this dataset.
Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models
With the overwhelming trend of mask image modeling led by MAE, generative pre-training has shown a remarkable potential to boost the performance of fundamental models in 2D vision. However, in 3D vision, the over-reliance on Transformer-based backbones and the unordered nature of point clouds have restricted the further development of generative pre-training. In this paper, we propose a novel 3D-to-2D generative pre-training method that is adaptable to any point cloud model. We propose to generate view images from different instructed poses via the cross-attention mechanism as the pre-training scheme. Generating view images has more precise supervision than its point cloud counterpart, thus assisting 3D backbones to have a finer comprehension of the geometrical structure and stereoscopic relations of the point cloud. Experimental results have proved the superiority of our proposed 3D-to-2D generative pre-training over previous pre-training methods. Our method is also effective in boosting the performance of architecture-oriented approaches, achieving state-of-the-art performance when fine-tuning on ScanObjectNN classification and ShapeNetPart segmentation tasks. Code is available at https://github.com/wangzy22/TAP.
Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method
In recent years, deep learning has greatly streamlined the process of generating realistic fake face images. Aware of the dangers, researchers have developed various tools to spot these counterfeits. Yet none asked the fundamental question: What digital manipulations make a real photographic face image fake, while others do not? In this paper, we put face forgery in a semantic context and define that computational methods that alter semantic face attributes to exceed human discrimination thresholds are sources of face forgery. Guided by our new definition, we construct a large face forgery image dataset, where each image is associated with a set of labels organized in a hierarchical graph. Our dataset enables two new testing protocols to probe the generalization of face forgery detectors. Moreover, we propose a semantics-oriented face forgery detection method that captures label relations and prioritizes the primary task (\ie, real or fake face detection). We show that the proposed dataset successfully exposes the weaknesses of current detectors as the test set and consistently improves their generalizability as the training set. Additionally, we demonstrate the superiority of our semantics-oriented method over traditional binary and multi-class classification-based detectors.
FitCLIP: Refining Large-Scale Pretrained Image-Text Models for Zero-Shot Video Understanding Tasks
Large-scale pretrained image-text models have shown incredible zero-shot performance in a handful of tasks, including video ones such as action recognition and text-to-video retrieval. However, these models have not been adapted to video, mainly because they do not account for the time dimension but also because video frames are different from the typical images (e.g., containing motion blur, and less sharpness). In this paper, we present a fine-tuning strategy to refine these large-scale pretrained image-text models for zero-shot video understanding tasks. We show that by carefully adapting these models we obtain considerable improvements on two zero-shot Action Recognition tasks and three zero-shot Text-to-video Retrieval tasks. The code is available at https://github.com/bryant1410/fitclip
ETran: Energy-Based Transferability Estimation
This paper addresses the problem of ranking pre-trained models for object detection and image classification. Selecting the best pre-trained model by fine-tuning is an expensive and time-consuming task. Previous works have proposed transferability estimation based on features extracted by the pre-trained models. We argue that quantifying whether the target dataset is in-distribution (IND) or out-of-distribution (OOD) for the pre-trained model is an important factor in the transferability estimation. To this end, we propose ETran, an energy-based transferability assessment metric, which includes three scores: 1) energy score, 2) classification score, and 3) regression score. We use energy-based models to determine whether the target dataset is OOD or IND for the pre-trained model. In contrast to the prior works, ETran is applicable to a wide range of tasks including classification, regression, and object detection (classification+regression). This is the first work that proposes transferability estimation for object detection task. Our extensive experiments on four benchmarks and two tasks show that ETran outperforms previous works on object detection and classification benchmarks by an average of 21% and 12%, respectively, and achieves SOTA in transferability assessment.
Automatic Shortcut Removal for Self-Supervised Representation Learning
In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation. A central challenge in this approach is that the feature extractor quickly learns to exploit low-level visual features such as color aberrations or watermarks and then fails to learn useful semantic representations. Much work has gone into identifying such "shortcut" features and hand-designing schemes to reduce their effect. Here, we propose a general framework for mitigating the effect shortcut features. Our key assumption is that those features which are the first to be exploited for solving the pretext task may also be the most vulnerable to an adversary trained to make the task harder. We show that this assumption holds across common pretext tasks and datasets by training a "lens" network to make small image changes that maximally reduce performance in the pretext task. Representations learned with the modified images outperform those learned without in all tested cases. Additionally, the modifications made by the lens reveal how the choice of pretext task and dataset affects the features learned by self-supervision.
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10x or 100x? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between `enormous data' and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.
Cluster-level pseudo-labelling for source-free cross-domain facial expression recognition
Automatically understanding emotions from visual data is a fundamental task for human behaviour understanding. While models devised for Facial Expression Recognition (FER) have demonstrated excellent performances on many datasets, they often suffer from severe performance degradation when trained and tested on different datasets due to domain shift. In addition, as face images are considered highly sensitive data, the accessibility to large-scale datasets for model training is often denied. In this work, we tackle the above-mentioned problems by proposing the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for FER. Our method exploits self-supervised pretraining to learn good feature representations from the target data and proposes a novel and robust cluster-level pseudo-labelling strategy that accounts for in-cluster statistics. We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER, and is on par with methods addressing FER in the UDA setting.
Deep Feature Consistent Variational Autoencoder
We present a novel method for constructing Variational Autoencoder (VAE). Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE, which ensures the VAE's output to preserve the spatial correlation characteristics of the input, thus leading the output to have a more natural visual appearance and better perceptual quality. Based on recent deep learning works such as style transfer, we employ a pre-trained deep convolutional neural network (CNN) and use its hidden features to define a feature perceptual loss for VAE training. Evaluated on the CelebA face dataset, we show that our model produces better results than other methods in the literature. We also show that our method can produce latent vectors that can capture the semantic information of face expressions and can be used to achieve state-of-the-art performance in facial attribute prediction.
What matters when building vision-language models?
The growing interest in vision-language models (VLMs) has been driven by improvements in large language models and vision transformers. Despite the abundance of literature on this subject, we observe that critical decisions regarding the design of VLMs are often not justified. We argue that these unsupported decisions impede progress in the field by making it difficult to identify which choices improve model performance. To address this issue, we conduct extensive experiments around pre-trained models, architecture choice, data, and training methods. Our consolidation of findings includes the development of Idefics2, an efficient foundational VLM of 8 billion parameters. Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks, and is often on par with models four times its size. We release the model (base, instructed, and chat) along with the datasets created for its training.
BEiT: BERT Pre-Training of Image Transformers
We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked image modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e, image patches (such as 16x16 pixels), and visual tokens (i.e., discrete tokens). We first "tokenize" the original image into visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-training objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT, we directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder. Experimental results on image classification and semantic segmentation show that our model achieves competitive results with previous pre-training methods. For example, base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-1K, significantly outperforming from-scratch DeiT training (81.8%) with the same setup. Moreover, large-size BEiT obtains 86.3% only using ImageNet-1K, even outperforming ViT-L with supervised pre-training on ImageNet-22K (85.2%). The code and pretrained models are available at https://aka.ms/beit.
15M Multimodal Facial Image-Text Dataset
Currently, image-text-driven multi-modal deep learning models have demonstrated their outstanding potential in many fields. In practice, tasks centered around facial images have broad application prospects. This paper presents FaceCaption-15M, a large-scale, diverse, and high-quality dataset of facial images accompanied by their natural language descriptions (facial image-to-text). This dataset aims to facilitate a study on face-centered tasks. FaceCaption-15M comprises over 15 million pairs of facial images and their corresponding natural language descriptions of facial features, making it the largest facial image-caption dataset to date. We conducted a comprehensive analysis of image quality, text naturalness, text complexity, and text-image relevance to demonstrate the superiority of FaceCaption-15M. To validate the effectiveness of FaceCaption-15M, we first trained a facial language-image pre-training model (FLIP, similar to CLIP) to align facial image with its corresponding captions in feature space. Subsequently, using both image and text encoders and fine-tuning only the linear layer, our FLIP-based models achieved state-of-the-art results on two challenging face-centered tasks. The purpose is to promote research in the field of face-related tasks through the availability of the proposed FaceCaption-15M dataset. All data, codes, and models are publicly available. https://huggingface.co/datasets/OpenFace-CQUPT/FaceCaption-15M
Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments
Labeled Faces in the Wild (LFW) database has been widely utilized as the benchmark of unconstrained face verification and due to big data driven machine learning methods, the performance on the database approaches nearly 100%. However, we argue that this accuracy may be too optimistic because of some limiting factors. Besides different poses, illuminations, occlusions and expressions, cross-age face is another challenge in face recognition. Different ages of the same person result in large intra-class variations and aging process is unavoidable in real world face verification. However, LFW does not pay much attention on it. Thereby we construct a Cross-Age LFW (CALFW) which deliberately searches and selects 3,000 positive face pairs with age gaps to add aging process intra-class variance. Negative pairs with same gender and race are also selected to reduce the influence of attribute difference between positive/negative pairs and achieve face verification instead of attributes classification. We evaluate several metric learning and deep learning methods on the new database. Compared to the accuracy on LFW, the accuracy drops about 10%-17% on CALFW.
Visual Classification via Description from Large Language Models
Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.
Text2FaceGAN: Face Generation from Fine Grained Textual Descriptions
Powerful generative adversarial networks (GAN) have been developed to automatically synthesize realistic images from text. However, most existing tasks are limited to generating simple images such as flowers from captions. In this work, we extend this problem to the less addressed domain of face generation from fine-grained textual descriptions of face, e.g., "A person has curly hair, oval face, and mustache". We are motivated by the potential of automated face generation to impact and assist critical tasks such as criminal face reconstruction. Since current datasets for the task are either very small or do not contain captions, we generate captions for images in the CelebA dataset by creating an algorithm to automatically convert a list of attributes to a set of captions. We then model the highly multi-modal problem of text to face generation as learning the conditional distribution of faces (conditioned on text) in same latent space. We utilize the current state-of-the-art GAN (DC-GAN with GAN-CLS loss) for learning conditional multi-modality. The presence of more fine-grained details and variable length of the captions makes the problem easier for a user but more difficult to handle compared to the other text-to-image tasks. We flipped the labels for real and fake images and added noise in discriminator. Generated images for diverse textual descriptions show promising results. In the end, we show how the widely used inceptions score is not a good metric to evaluate the performance of generative models used for synthesizing faces from text.
LPFF: A Portrait Dataset for Face Generators Across Large Poses
The creation of 2D realistic facial images and 3D face shapes using generative networks has been a hot topic in recent years. Existing face generators exhibit exceptional performance on faces in small to medium poses (with respect to frontal faces) but struggle to produce realistic results for large poses. The distorted rendering results on large poses in 3D-aware generators further show that the generated 3D face shapes are far from the distribution of 3D faces in reality. We find that the above issues are caused by the training dataset's pose imbalance. In this paper, we present LPFF, a large-pose Flickr face dataset comprised of 19,590 high-quality real large-pose portrait images. We utilize our dataset to train a 2D face generator that can process large-pose face images, as well as a 3D-aware generator that can generate realistic human face geometry. To better validate our pose-conditional 3D-aware generators, we develop a new FID measure to evaluate the 3D-level performance. Through this novel FID measure and other experiments, we show that LPFF can help 2D face generators extend their latent space and better manipulate the large-pose data, and help 3D-aware face generators achieve better view consistency and more realistic 3D reconstruction results.
Detection-Oriented Image-Text Pretraining for Open-Vocabulary Detection
We present a new open-vocabulary detection approach based on detection-oriented image-text pretraining to bridge the gap between image-level pretraining and open-vocabulary object detection. At the pretraining phase, we replace the commonly used classification architecture with the detector architecture, which better serves the region-level recognition needs of detection by enabling the detector heads to learn from noisy image-text pairs. Using only standard contrastive loss and no pseudo-labeling, our approach is a simple yet effective extension of the contrastive learning method to learn emergent object-semantic cues. In addition, we propose a shifted-window learning approach upon window attention to make the backbone representation more robust, translation-invariant, and less biased by the window pattern. On the popular LVIS open-vocabulary detection benchmark, our approach sets a new state of the art of 40.4 mask AP_r using the common ViT-L backbone, significantly outperforming the best existing approach by +6.5 mask AP_r at system level. On the COCO benchmark, we achieve very competitive 40.8 novel AP without pseudo labeling or weak supervision. In addition, we evaluate our approach on the transfer detection setup, where ours outperforms the baseline significantly. Visualization reveals emerging object locality from the pretraining recipes compared to the baseline. Code and models will be publicly released.
OSDFace: One-Step Diffusion Model for Face Restoration
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception Tasks?
The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.
Weakly Supervised Face Naming with Symmetry-Enhanced Contrastive Loss
We revisit the weakly supervised cross-modal face-name alignment task; that is, given an image and a caption, we label the faces in the image with the names occurring in the caption. Whereas past approaches have learned the latent alignment between names and faces by uncertainty reasoning over a set of images and their respective captions, in this paper, we rely on appropriate loss functions to learn the alignments in a neural network setting and propose SECLA and SECLA-B. SECLA is a Symmetry-Enhanced Contrastive Learning-based Alignment model that can effectively maximize the similarity scores between corresponding faces and names in a weakly supervised fashion. A variation of the model, SECLA-B, learns to align names and faces as humans do, that is, learning from easy to hard cases to further increase the performance of SECLA. More specifically, SECLA-B applies a two-stage learning framework: (1) Training the model on an easy subset with a few names and faces in each image-caption pair. (2) Leveraging the known pairs of names and faces from the easy cases using a bootstrapping strategy with additional loss to prevent forgetting and learning new alignments at the same time. We achieve state-of-the-art results for both the augmented Labeled Faces in the Wild dataset and the Celebrity Together dataset. In addition, we believe that our methods can be adapted to other multimodal news understanding tasks.
Kinship Representation Learning with Face Componential Relation
Kinship recognition aims to determine whether the subjects in two facial images are kin or non-kin, which is an emerging and challenging problem. However, most previous methods focus on heuristic designs without considering the spatial correlation between face images. In this paper, we aim to learn discriminative kinship representations embedded with the relation information between face components (e.g., eyes, nose, etc.). To achieve this goal, we propose the Face Componential Relation Network, which learns the relationship between face components among images with a cross-attention mechanism, which automatically learns the important facial regions for kinship recognition. Moreover, we propose Face Componential Relation Network (FaCoRNet), which adapts the loss function by the guidance from cross-attention to learn more discriminative feature representations. The proposed FaCoRNet outperforms previous state-of-the-art methods by large margins for the largest public kinship recognition FIW benchmark.
Mimetic Initialization of Self-Attention Layers
It is notoriously difficult to train Transformers on small datasets; typically, large pre-trained models are instead used as the starting point. We explore the weights of such pre-trained Transformers (particularly for vision) to attempt to find reasons for this discrepancy. Surprisingly, we find that simply initializing the weights of self-attention layers so that they "look" more like their pre-trained counterparts allows us to train vanilla Transformers faster and to higher final accuracies, particularly on vision tasks such as CIFAR-10 and ImageNet classification, where we see gains in accuracy of over 5% and 4%, respectively. Our initialization scheme is closed form, learning-free, and very simple: we set the product of the query and key weights to be approximately the identity, and the product of the value and projection weights to approximately the negative identity. As this mimics the patterns we saw in pre-trained Transformers, we call the technique "mimetic initialization".
Ada-NETS: Face Clustering via Adaptive Neighbour Discovery in the Structure Space
Face clustering has attracted rising research interest recently to take advantage of massive amounts of face images on the web. State-of-the-art performance has been achieved by Graph Convolutional Networks (GCN) due to their powerful representation capacity. However, existing GCN-based methods build face graphs mainly according to kNN relations in the feature space, which may lead to a lot of noise edges connecting two faces of different classes. The face features will be polluted when messages pass along these noise edges, thus degrading the performance of GCNs. In this paper, a novel algorithm named Ada-NETS is proposed to cluster faces by constructing clean graphs for GCNs. In Ada-NETS, each face is transformed to a new structure space, obtaining robust features by considering face features of the neighbour images. Then, an adaptive neighbour discovery strategy is proposed to determine a proper number of edges connecting to each face image. It significantly reduces the noise edges while maintaining the good ones to build a graph with clean yet rich edges for GCNs to cluster faces. Experiments on multiple public clustering datasets show that Ada-NETS significantly outperforms current state-of-the-art methods, proving its superiority and generalization. Code is available at https://github.com/damo-cv/Ada-NETS.
FaceScore: Benchmarking and Enhancing Face Quality in Human Generation
Diffusion models (DMs) have achieved significant success in generating imaginative images given textual descriptions. However, they are likely to fall short when it comes to real-life scenarios with intricate details. The low-quality, unrealistic human faces in text-to-image generation are one of the most prominent issues, hindering the wide application of DMs in practice. Targeting addressing such an issue, we first assess the face quality of generations from popular pre-trained DMs with the aid of human annotators and then evaluate the alignment between existing metrics with human judgments. Observing that existing metrics can be unsatisfactory for quantifying face quality, we develop a novel metric named FaceScore (FS) by fine-tuning the widely used ImageReward on a dataset of (win, loss) face pairs cheaply crafted by an inpainting pipeline of DMs. Extensive studies reveal FS enjoys a superior alignment with humans. On the other hand, FS opens up the door for enhancing DMs for better face generation. With FS offering image ratings, we can easily perform preference learning algorithms to refine DMs like SDXL. Comprehensive experiments verify the efficacy of our approach for improving face quality. The code is released at https://github.com/OPPO-Mente-Lab/FaceScore.
[MASK] is All You Need
In generative models, two paradigms have gained attraction in various applications: next-set prediction-based Masked Generative Models and next-noise prediction-based Non-Autoregressive Models, e.g., Diffusion Models. In this work, we propose using discrete-state models to connect them and explore their scalability in the vision domain. First, we conduct a step-by-step analysis in a unified design space across two types of models including timestep-independence, noise schedule, temperature, guidance strength, etc in a scalable manner. Second, we re-cast typical discriminative tasks, e.g., image segmentation, as an unmasking process from [MASK]tokens on a discrete-state model. This enables us to perform various sampling processes, including flexible conditional sampling by only training once to model the joint distribution. All aforementioned explorations lead to our framework named Discrete Interpolants, which enables us to achieve state-of-the-art or competitive performance compared to previous discrete-state based methods in various benchmarks, like ImageNet256, MS COCO, and video dataset FaceForensics. In summary, by leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models, as well as generative and discriminative tasks.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
Towards Universal Image Embeddings: A Large-Scale Dataset and Challenge for Generic Image Representations
Fine-grained and instance-level recognition methods are commonly trained and evaluated on specific domains, in a model per domain scenario. Such an approach, however, is impractical in real large-scale applications. In this work, we address the problem of universal image embedding, where a single universal model is trained and used in multiple domains. First, we leverage existing domain-specific datasets to carefully construct a new large-scale public benchmark for the evaluation of universal image embeddings, with 241k query images, 1.4M index images and 2.8M training images across 8 different domains and 349k classes. We define suitable metrics, training and evaluation protocols to foster future research in this area. Second, we provide a comprehensive experimental evaluation on the new dataset, demonstrating that existing approaches and simplistic extensions lead to worse performance than an assembly of models trained for each domain separately. Finally, we conducted a public research competition on this topic, leveraging industrial datasets, which attracted the participation of more than 1k teams worldwide. This exercise generated many interesting research ideas and findings which we present in detail. Project webpage: https://cmp.felk.cvut.cz/univ_emb/
Towards Inadequately Pre-trained Models in Transfer Learning
Pre-training has been a popular learning paradigm in deep learning era, especially in annotation-insufficient scenario. Better ImageNet pre-trained models have been demonstrated, from the perspective of architecture, by previous research to have better transferability to downstream tasks. However, in this paper, we found that during the same pre-training process, models at middle epochs, which is inadequately pre-trained, can outperform fully trained models when used as feature extractors (FE), while the fine-tuning (FT) performance still grows with the source performance. This reveals that there is not a solid positive correlation between top-1 accuracy on ImageNet and the transferring result on target data. Based on the contradictory phenomenon between FE and FT that better feature extractor fails to be fine-tuned better accordingly, we conduct comprehensive analyses on features before softmax layer to provide insightful explanations. Our discoveries suggest that, during pre-training, models tend to first learn spectral components corresponding to large singular values and the residual components contribute more when fine-tuning.