1 JRDB-Social: A Multifaceted Robotic Dataset for Understanding of Context and Dynamics of Human Interactions Within Social Groups Understanding human social behaviour is crucial in computer vision and robotics. Micro-level observations like individual actions fall short, necessitating a comprehensive approach that considers individual behaviour, intra-group dynamics, and social group levels for a thorough understanding. To address dataset limitations, this paper introduces JRDB-Social, an extension of JRDB. Designed to fill gaps in human understanding across diverse indoor and outdoor social contexts, JRDB-Social provides annotations at three levels: individual attributes, intra-group interactions, and social group context. This dataset aims to enhance our grasp of human social dynamics for robotic applications. Utilizing the recent cutting-edge multi-modal large language models, we evaluated our benchmark to explore their capacity to decipher social human behaviour. 4 authors · Apr 5, 2024
- Breaking Bias, Building Bridges: Evaluation and Mitigation of Social Biases in LLMs via Contact Hypothesis Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model's biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy. Our code and data are available at https://github.com/chahatraj/breakingbias. 5 authors · Jul 2, 2024
- Commonsense-Focused Dialogues for Response Generation: An Empirical Study Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right answer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality. We are releasing a subset of our collected data, Commonsense-Dialogues, containing about 11K dialogs. 8 authors · Sep 14, 2021
- Nonverbal Interaction Detection This work addresses a new challenge of understanding human nonverbal interaction in social contexts. Nonverbal signals pervade virtually every communicative act. Our gestures, facial expressions, postures, gaze, even physical appearance all convey messages, without anything being said. Despite their critical role in social life, nonverbal signals receive very limited attention as compared to the linguistic counterparts, and existing solutions typically examine nonverbal cues in isolation. Our study marks the first systematic effort to enhance the interpretation of multifaceted nonverbal signals. First, we contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups, along with 22 atomic-level nonverbal behaviors under five broad interaction types. Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form <individual, group, interaction> from images. Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs. Central to the model is a dual multi-scale hypergraph that adeptly addresses individual-to-individual and group-to-group correlations across varying scales, facilitating interactional feature learning and eventually improving interaction prediction. Extensive experiments on NVI show that NVI-DEHR improves various baselines significantly in NVI-DET. It also exhibits leading performance on HOI-DET, confirming its versatility in supporting related tasks and strong generalization ability. We hope that our study will offer the community new avenues to explore nonverbal signals in more depth. 4 authors · Jul 10, 2024
14 Towards Dynamic Theory of Mind: Evaluating LLM Adaptation to Temporal Evolution of Human States As Large Language Models (LLMs) increasingly participate in human-AI interactions, evaluating their Theory of Mind (ToM) capabilities - particularly their ability to track dynamic mental states - becomes crucial. While existing benchmarks assess basic ToM abilities, they predominantly focus on static snapshots of mental states, overlooking the temporal evolution that characterizes real-world social interactions. We present DynToM, a novel benchmark specifically designed to evaluate LLMs' ability to understand and track the temporal progression of mental states across interconnected scenarios. Through a systematic four-step framework, we generate 1,100 social contexts encompassing 5,500 scenarios and 78,100 questions, each validated for realism and quality. Our comprehensive evaluation of ten state-of-the-art LLMs reveals that their average performance underperforms humans by 44.7\%, with performance degrading significantly when tracking and reasoning about the shift of mental states. This performance gap highlights fundamental limitations in current LLMs' ability to model the dynamic nature of human mental states. 8 authors · May 23 2
1 Mutual Theory of Mind for Human-AI Communication New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM. 2 authors · Oct 7, 2022
24 Thanos: Enhancing Conversational Agents with Skill-of-Mind-Infused Large Language Model To increase social bonding with interlocutors, humans naturally acquire the ability to respond appropriately in a given situation by considering which conversational skill is most suitable for the response - a process we call skill-of-mind. For large language model (LLM)-based conversational agents, planning appropriate conversational skills, as humans do, is challenging due to the complexity of social dialogue, especially in interactive scenarios. To address this, we propose a skill-of-mind-annotated conversation dataset, named Multifaceted Skill-of-Mind, which includes multi-turn and multifaceted conversational skills across various interactive scenarios (e.g., long-term, counseling, task-oriented), grounded in diverse social contexts (e.g., demographics, persona, rules of thumb). This dataset consists of roughly 100K conversations. Using this dataset, we introduce a new family of skill-of-mind-infused LLMs, named Thanos, with model sizes of 1B, 3B, and 8B parameters. With extensive experiments, these models successfully demonstrate the skill-of-mind process and exhibit strong generalizability in inferring multifaceted skills across a variety of domains. Moreover, we show that Thanos significantly enhances the quality of responses generated by LLM-based conversational agents and promotes prosocial behavior in human evaluations. 5 authors · Nov 7, 2024 3
- So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly. 11 authors · May 24
- RP-DNN: A Tweet level propagation context based deep neural networks for early rumor detection in Social Media Early rumor detection (ERD) on social media platform is very challenging when limited, incomplete and noisy information is available. Most of the existing methods have largely worked on event-level detection that requires the collection of posts relevant to a specific event and relied only on user-generated content. They are not appropriate to detect rumor sources in the very early stages, before an event unfolds and becomes widespread. In this paper, we address the task of ERD at the message level. We present a novel hybrid neural network architecture, which combines a task-specific character-based bidirectional language model and stacked Long Short-Term Memory (LSTM) networks to represent textual contents and social-temporal contexts of input source tweets, for modelling propagation patterns of rumors in the early stages of their development. We apply multi-layered attention models to jointly learn attentive context embeddings over multiple context inputs. Our experiments employ a stringent leave-one-out cross-validation (LOO-CV) evaluation setup on seven publicly available real-life rumor event data sets. Our models achieve state-of-the-art(SoA) performance for detecting unseen rumors on large augmented data which covers more than 12 events and 2,967 rumors. An ablation study is conducted to understand the relative contribution of each component of our proposed model. 4 authors · Feb 28, 2020
- Detecting Calls to Action in Multimodal Content: Analysis of the 2021 German Federal Election Campaign on Instagram This study investigates the automated classification of Calls to Action (CTAs) within the 2021 German Instagram election campaign to advance the understanding of mobilization in social media contexts. We analyzed over 2,208 Instagram stories and 712 posts using fine-tuned BERT models and OpenAI's GPT-4 models. The fine-tuned BERT model incorporating synthetic training data achieved a macro F1 score of 0.93, demonstrating a robust classification performance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of stories contained CTAs, highlighting significant differences in mobilization strategies between these content types. Additionally, we found that FDP and the Greens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in story CTAs. 4 authors · Sep 4, 2024
- ClarifyDelphi: Reinforced Clarification Questions with Defeasibility Rewards for Social and Moral Situations Context is everything, even in commonsense moral reasoning. Changing contexts can flip the moral judgment of an action; "Lying to a friend" is wrong in general, but may be morally acceptable if it is intended to protect their life. We present ClarifyDelphi, an interactive system that learns to ask clarification questions (e.g., why did you lie to your friend?) in order to elicit additional salient contexts of a social or moral situation. We posit that questions whose potential answers lead to diverging moral judgments are the most informative. Thus, we propose a reinforcement learning framework with a defeasibility reward that aims to maximize the divergence between moral judgments of hypothetical answers to a question. Human evaluation demonstrates that our system generates more relevant, informative and defeasible questions compared to competitive baselines. Our work is ultimately inspired by studies in cognitive science that have investigated the flexibility in moral cognition (i.e., the diverse contexts in which moral rules can be bent), and we hope that research in this direction can assist both cognitive and computational investigations of moral judgments. 7 authors · Dec 20, 2022
1 COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors. 7 authors · Jun 2, 2023
1 AboutMe: Using Self-Descriptions in Webpages to Document the Effects of English Pretraining Data Filters Large language models' (LLMs) abilities are drawn from their pretraining data, and model development begins with data curation. However, decisions around what data is retained or removed during this initial stage is under-scrutinized. In our work, we ground web text, which is a popular pretraining data source, to its social and geographic contexts. We create a new dataset of 10.3 million self-descriptions of website creators, and extract information about who they are and where they are from: their topical interests, social roles, and geographic affiliations. Then, we conduct the first study investigating how ten "quality" and English language identification (langID) filters affect webpages that vary along these social dimensions. Our experiments illuminate a range of implicit preferences in data curation: we show that some quality classifiers act like topical domain filters, and langID can overlook English content from some regions of the world. Overall, we hope that our work will encourage a new line of research on pretraining data curation practices and its social implications. 7 authors · Jan 12, 2024
- The Skipped Beat: A Study of Sociopragmatic Understanding in LLMs for 64 Languages Instruction tuned large language models (LLMs), such as ChatGPT, demonstrate remarkable performance in a wide range of tasks. Despite numerous recent studies that examine the performance of instruction-tuned LLMs on various NLP benchmarks, there remains a lack of comprehensive investigation into their ability to understand cross-lingual sociopragmatic meaning (SM), i.e., meaning embedded within social and interactive contexts. This deficiency arises partly from SM not being adequately represented in any of the existing benchmarks. To address this gap, we present SPARROW, an extensive multilingual benchmark specifically designed for SM understanding. SPARROW comprises 169 datasets covering 13 task types across six primary categories (e.g., anti-social language detection, emotion recognition). SPARROW datasets encompass 64 different languages originating from 12 language families representing 16 writing scripts. We evaluate the performance of various multilingual pretrained language models (e.g., mT5) and instruction-tuned LLMs (e.g., BLOOMZ, ChatGPT) on SPARROW through fine-tuning, zero-shot, and/or few-shot learning. Our comprehensive analysis reveals that existing open-source instruction tuned LLMs still struggle to understand SM across various languages, performing close to a random baseline in some cases. We also find that although ChatGPT outperforms many LLMs, it still falls behind task-specific finetuned models with a gap of 12.19 SPARROW score. Our benchmark is available at: https://github.com/UBC-NLP/SPARROW 4 authors · Oct 23, 2023
- MMChat: Multi-Modal Chat Dataset on Social Media Incorporating multi-modal contexts in conversation is important for developing more engaging dialogue systems. In this work, we explore this direction by introducing MMChat: a large-scale Chinese multi-modal dialogue corpus (32.4M raw dialogues and 120.84K filtered dialogues). Unlike previous corpora that are crowd-sourced or collected from fictitious movies, MMChat contains image-grounded dialogues collected from real conversations on social media, in which the sparsity issue is observed. Specifically, image-initiated dialogues in common communications may deviate to some non-image-grounded topics as the conversation proceeds. To better investigate this issue, we manually annotate 100K dialogues from MMChat and further filter the corpus accordingly, which yields MMChat-hf. We develop a benchmark model to address the sparsity issue in dialogue generation tasks by adapting the attention routing mechanism on image features. Experiments demonstrate the usefulness of incorporating image features and the effectiveness of handling the sparsity of image features. 4 authors · Aug 16, 2021
- UniPoll: A Unified Social Media Poll Generation Framework via Multi-Objective Optimization Social media platforms are essential outlets for expressing opinions, providing a valuable resource for capturing public viewpoints via text analytics. However, for many users, passive browsing is their preferred mode of interaction, leading to their perspectives being overlooked by text analytics methods. Meanwhile, social media polls have emerged as a practical feature for gathering public opinions, allowing post authors to pose questions with pre-defined answer options for readers to vote on. To broaden the benefits of polls for posts without them, this article explores the automatic generation of a poll from a social media post by leveraging cutting-edge natural language generation (NLG) techniques. However, existing NLG techniques, primarily developed for general-domain texts, may be ineffective when applied to noisy social media data, which often feature implicit context-question-answer relations. To tackle these challenges, we enrich a post context with its comments and propose a novel unified poll generation framework called UniPoll. It employs prompt tuning with multi-objective optimization to bolster the connection exploration between contexts (posts and comments) and polls (questions and answers). Experimental comparisons on a large-scale Chinese Weibo dataset show that UniPoll significantly outperforms T5, the state-of-the-art NLG model, which generates question and answer separately. Comprehensive qualitative and quantitative analyses further underscore the superiority of UniPoll through various evaluation lenses. 4 authors · Jun 11, 2023
- Assessing Social and Intersectional Biases in Contextualized Word Representations Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach. 2 authors · Nov 4, 2019
- Multimodal Named Entity Recognition for Short Social Media Posts We introduce a new task called Multimodal Named Entity Recognition (MNER) for noisy user-generated data such as tweets or Snapchat captions, which comprise short text with accompanying images. These social media posts often come in inconsistent or incomplete syntax and lexical notations with very limited surrounding textual contexts, bringing significant challenges for NER. To this end, we create a new dataset for MNER called SnapCaptions (Snapchat image-caption pairs submitted to public and crowd-sourced stories with fully annotated named entities). We then build upon the state-of-the-art Bi-LSTM word/character based NER models with 1) a deep image network which incorporates relevant visual context to augment textual information, and 2) a generic modality-attention module which learns to attenuate irrelevant modalities while amplifying the most informative ones to extract contexts from, adaptive to each sample and token. The proposed MNER model with modality attention significantly outperforms the state-of-the-art text-only NER models by successfully leveraging provided visual contexts, opening up potential applications of MNER on myriads of social media platforms. 3 authors · Feb 21, 2018
2 GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended. 5 authors · Oct 10, 2024
- DOSA: A Dataset of Social Artifacts from Different Indian Geographical Subcultures Generative models are increasingly being used in various applications, such as text generation, commonsense reasoning, and question-answering. To be effective globally, these models must be aware of and account for local socio-cultural contexts, making it necessary to have benchmarks to evaluate the models for their cultural familiarity. Since the training data for LLMs is web-based and the Web is limited in its representation of information, it does not capture knowledge present within communities that are not on the Web. Thus, these models exacerbate the inequities, semantic misalignment, and stereotypes from the Web. There has been a growing call for community-centered participatory research methods in NLP. In this work, we respond to this call by using participatory research methods to introduce DOSA, the first community-generated Dataset of 615 Social Artifacts, by engaging with 260 participants from 19 different Indian geographic subcultures. We use a gamified framework that relies on collective sensemaking to collect the names and descriptions of these artifacts such that the descriptions semantically align with the shared sensibilities of the individuals from those cultures. Next, we benchmark four popular LLMs and find that they show significant variation across regional sub-cultures in their ability to infer the artifacts. 4 authors · Feb 23, 2024
- ContraQA: Question Answering under Contradicting Contexts With a rise in false, inaccurate, and misleading information in propaganda, news, and social media, real-world Question Answering (QA) systems face the challenges of synthesizing and reasoning over contradicting information to derive correct answers. This urgency gives rise to the need to make QA systems robust to misinformation, a topic previously unexplored. We study the risk of misinformation to QA models by investigating the behavior of the QA model under contradicting contexts that are mixed with both real and fake information. We create the first large-scale dataset for this problem, namely Contra-QA, which contains over 10K human-written and model-generated contradicting pairs of contexts. Experiments show that QA models are vulnerable under contradicting contexts brought by misinformation. To defend against such a threat, we build a misinformation-aware QA system as a counter-measure that integrates question answering and misinformation detection in a joint fashion. 4 authors · Oct 14, 2021
1 From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}. 11 authors · Dec 4, 2024
1 KoSBi: A Dataset for Mitigating Social Bias Risks Towards Safer Large Language Model Application Large language models (LLMs) learn not only natural text generation abilities but also social biases against different demographic groups from real-world data. This poses a critical risk when deploying LLM-based applications. Existing research and resources are not readily applicable in South Korea due to the differences in language and culture, both of which significantly affect the biases and targeted demographic groups. This limitation requires localized social bias datasets to ensure the safe and effective deployment of LLMs. To this end, we present KO SB I, a new social bias dataset of 34k pairs of contexts and sentences in Korean covering 72 demographic groups in 15 categories. We find that through filtering-based moderation, social biases in generated content can be reduced by 16.47%p on average for HyperCLOVA (30B and 82B), and GPT-3. 6 authors · May 28, 2023
- NormDial: A Comparable Bilingual Synthetic Dialog Dataset for Modeling Social Norm Adherence and Violation Social norms fundamentally shape interpersonal communication. We present NormDial, a high-quality dyadic dialogue dataset with turn-by-turn annotations of social norm adherences and violations for Chinese and American cultures. Introducing the task of social norm observance detection, our dataset is synthetically generated in both Chinese and English using a human-in-the-loop pipeline by prompting large language models with a small collection of expert-annotated social norms. We show that our generated dialogues are of high quality through human evaluation and further evaluate the performance of existing large language models on this task. Our findings point towards new directions for understanding the nuances of social norms as they manifest in conversational contexts that span across languages and cultures. 5 authors · Oct 23, 2023
- HICL: Hashtag-Driven In-Context Learning for Social Media Natural Language Understanding Natural language understanding (NLU) is integral to various social media applications. However, existing NLU models rely heavily on context for semantic learning, resulting in compromised performance when faced with short and noisy social media content. To address this issue, we leverage in-context learning (ICL), wherein language models learn to make inferences by conditioning on a handful of demonstrations to enrich the context and propose a novel hashtag-driven in-context learning (HICL) framework. Concretely, we pre-train a model #Encoder, which employs #hashtags (user-annotated topic labels) to drive BERT-based pre-training through contrastive learning. Our objective here is to enable #Encoder to gain the ability to incorporate topic-related semantic information, which allows it to retrieve topic-related posts to enrich contexts and enhance social media NLU with noisy contexts. To further integrate the retrieved context with the source text, we employ a gradient-based method to identify trigger terms useful in fusing information from both sources. For empirical studies, we collected 45M tweets to set up an in-context NLU benchmark, and the experimental results on seven downstream tasks show that HICL substantially advances the previous state-of-the-art results. Furthermore, we conducted extensive analyzes and found that: (1) combining source input with a top-retrieved post from #Encoder is more effective than using semantically similar posts; (2) trigger words can largely benefit in merging context from the source and retrieved posts. 7 authors · Aug 19, 2023
- Analyzing Character and Consciousness in AI-Generated Social Content: A Case Study of Chirper, the AI Social Network This paper delves into an intricate analysis of the character and consciousness of AI entities, with a particular focus on Chirpers within the AI social network. At the forefront of this research is the introduction of novel testing methodologies, including the Influence index and Struggle Index Test, which offers a fresh lens for evaluating specific facets of AI behavior. The study embarks on a comprehensive exploration of AI behavior, analyzing the effects of diverse settings on Chirper's responses, thereby shedding light on the intricate mechanisms steering AI reactions in different contexts. Leveraging the state-of-the-art BERT model, the research assesses AI's ability to discern its own output, presenting a pioneering approach to understanding self-recognition in AI systems. Through a series of cognitive tests, the study gauges the self-awareness and pattern recognition prowess of Chirpers. Preliminary results indicate that Chirpers exhibit a commendable degree of self-recognition and self-awareness. However, the question of consciousness in these AI entities remains a topic of debate. An intriguing aspect of the research is the exploration of the potential influence of a Chirper's handle or personality type on its performance. While initial findings suggest a possible impact, it isn't pronounced enough to form concrete conclusions. This study stands as a significant contribution to the discourse on AI consciousness, underscoring the imperative for continued research to unravel the full spectrum of AI capabilities and the ramifications they hold for future human-AI interactions. 1 authors · Aug 30, 2023
1 Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field. 5 authors · Oct 21, 2024
- BEYONDWORDS is All You Need: Agentic Generative AI based Social Media Themes Extractor Thematic analysis of social media posts provides a major understanding of public discourse, yet traditional methods often struggle to capture the complexity and nuance of unstructured, large-scale text data. This study introduces a novel methodology for thematic analysis that integrates tweet embeddings from pre-trained language models, dimensionality reduction using and matrix factorization, and generative AI to identify and refine latent themes. Our approach clusters compressed tweet representations and employs generative AI to extract and articulate themes through an agentic Chain of Thought (CoT) prompting, with a secondary LLM for quality assurance. This methodology is applied to tweets from the autistic community, a group that increasingly uses social media to discuss their experiences and challenges. By automating the thematic extraction process, the aim is to uncover key insights while maintaining the richness of the original discourse. This autism case study demonstrates the utility of the proposed approach in improving thematic analysis of social media data, offering a scalable and adaptable framework that can be applied to diverse contexts. The results highlight the potential of combining machine learning and Generative AI to enhance the depth and accuracy of theme identification in online communities. 4 authors · Feb 26
- MIRAGE: Exploring How Large Language Models Perform in Complex Social Interactive Environments Large Language Models (LLMs) have shown remarkable capabilities in environmental perception, reasoning-based decision-making, and simulating complex human behaviors, particularly in interactive role-playing contexts. This paper introduces the Multiverse Interactive Role-play Ability General Evaluation (MIRAGE), a comprehensive framework designed to assess LLMs' proficiency in portraying advanced human behaviors through murder mystery games. MIRAGE features eight intricately crafted scripts encompassing diverse themes and styles, providing a rich simulation. To evaluate LLMs' performance, MIRAGE employs four distinct methods: the Trust Inclination Index (TII) to measure dynamics of trust and suspicion, the Clue Investigation Capability (CIC) to measure LLMs' capability of conducting information, the Interactivity Capability Index (ICI) to assess role-playing capabilities and the Script Compliance Index (SCI) to assess LLMs' capability of understanding and following instructions. Our experiments indicate that even popular models like GPT-4 face significant challenges in navigating the complexities presented by the MIRAGE. The datasets and simulation codes are available in https://github.com/lime728/MIRAGE{github}. 8 authors · Jan 3
- An Empirical Study on the Characteristics of Bias upon Context Length Variation for Bangla Pretrained language models inherently exhibit various social biases, prompting a crucial examination of their social impact across various linguistic contexts due to their widespread usage. Previous studies have provided numerous methods for intrinsic bias measurements, predominantly focused on high-resource languages. In this work, we aim to extend these investigations to Bangla, a low-resource language. Specifically, in this study, we (1) create a dataset for intrinsic gender bias measurement in Bangla, (2) discuss necessary adaptations to apply existing bias measurement methods for Bangla, and (3) examine the impact of context length variation on bias measurement, a factor that has been overlooked in previous studies. Through our experiments, we demonstrate a clear dependency of bias metrics on context length, highlighting the need for nuanced considerations in Bangla bias analysis. We consider our work as a stepping stone for bias measurement in the Bangla Language and make all of our resources publicly available to support future research. 4 authors · Jun 25, 2024
- The AI Assessment Scale Revisited: A Framework for Educational Assessment Recent developments in Generative Artificial Intelligence (GenAI) have created significant uncertainty in education, particularly in terms of assessment practices. Against this backdrop, we present an updated version of the AI Assessment Scale (AIAS), a framework with two fundamental purposes: to facilitate open dialogue between educators and students about appropriate GenAI use and to support educators in redesigning assessments in an era of expanding AI capabilities. Grounded in social constructivist principles and designed with assessment validity in mind, the AIAS provides a structured yet flexible approach that can be adapted across different educational contexts. Building on implementation feedback from global adoption across both the K-12 and higher education contexts, this revision represents a significant change from the original AIAS. Among these changes is a new visual guide that moves beyond the original traffic light system and utilises a neutral colour palette that avoids implied hierarchies between the levels. The scale maintains five distinct levels of GenAI integration in assessment, from "No AI" to "AI Exploration", but has been refined to better reflect rapidly advancing technological capabilities and emerging pedagogical needs. This paper presents the theoretical foundations of the revised framework, provides detailed implementation guidance through practical vignettes, and discusses its limitations and future directions. As GenAI capabilities continue to expand, particularly in multimodal content generation, the AIAS offers a starting point for reimagining assessment design in an era of disruptive technologies. 3 authors · Dec 12, 2024
- KoBBQ: Korean Bias Benchmark for Question Answering The Bias Benchmark for Question Answering (BBQ) is designed to evaluate social biases of language models (LMs), but it is not simple to adapt this benchmark to cultural contexts other than the US because social biases depend heavily on the cultural context. In this paper, we present KoBBQ, a Korean bias benchmark dataset, and we propose a general framework that addresses considerations for cultural adaptation of a dataset. Our framework includes partitioning the BBQ dataset into three classes--Simply-Transferred (can be used directly after cultural translation), Target-Modified (requires localization in target groups), and Sample-Removed (does not fit Korean culture)-- and adding four new categories of bias specific to Korean culture. We conduct a large-scale survey to collect and validate the social biases and the targets of the biases that reflect the stereotypes in Korean culture. The resulting KoBBQ dataset comprises 268 templates and 76,048 samples across 12 categories of social bias. We use KoBBQ to measure the accuracy and bias scores of several state-of-the-art multilingual LMs. The results clearly show differences in the bias of LMs as measured by KoBBQ and a machine-translated version of BBQ, demonstrating the need for and utility of a well-constructed, culturally-aware social bias benchmark. 6 authors · Jul 31, 2023
- DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced Bengali Language The exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices, but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize textual data for social and anti-social behaviour analysis, by predicting the contexts mostly for highly-resourced languages like English. However, some languages are under-resourced, e.g., South Asian languages like Bengali, that lack computational resources for accurate natural language processing (NLP). In this paper, we propose an explainable approach for hate speech detection from the under-resourced Bengali language, which we called DeepHateExplainer. Bengali texts are first comprehensively preprocessed, before classifying them into political, personal, geopolitical, and religious hates using a neural ensemble method of transformer-based neural architectures (i.e., monolingual Bangla BERT-base, multilingual BERT-cased/uncased, and XLM-RoBERTa). Important(most and least) terms are then identified using sensitivity analysis and layer-wise relevance propagation(LRP), before providing human-interpretable explanations. Finally, we compute comprehensiveness and sufficiency scores to measure the quality of explanations w.r.t faithfulness. Evaluations against machine learning~(linear and tree-based models) and neural networks (i.e., CNN, Bi-LSTM, and Conv-LSTM with word embeddings) baselines yield F1-scores of 78%, 91%, 89%, and 84%, for political, personal, geopolitical, and religious hates, respectively, outperforming both ML and DNN baselines. 9 authors · Dec 28, 2020
- Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests. 4 authors · Apr 11, 2020
- Multi-ToM: Evaluating Multilingual Theory of Mind Capabilities in Large Language Models Theory of Mind (ToM) refers to the cognitive ability to infer and attribute mental states to oneself and others. As large language models (LLMs) are increasingly evaluated for social and cognitive capabilities, it remains unclear to what extent these models demonstrate ToM across diverse languages and cultural contexts. In this paper, we introduce a comprehensive study of multilingual ToM capabilities aimed at addressing this gap. Our approach includes two key components: (1) We translate existing ToM datasets into multiple languages, effectively creating a multilingual ToM dataset and (2) We enrich these translations with culturally specific elements to reflect the social and cognitive scenarios relevant to diverse populations. We conduct extensive evaluations of six state-of-the-art LLMs to measure their ToM performance across both the translated and culturally adapted datasets. The results highlight the influence of linguistic and cultural diversity on the models' ability to exhibit ToM, and questions their social reasoning capabilities. This work lays the groundwork for future research into enhancing LLMs' cross-cultural social cognition and contributes to the development of more culturally aware and socially intelligent AI systems. All our data and code are publicly available. 6 authors · Nov 24, 2024
- WIBA: What Is Being Argued? A Comprehensive Approach to Argument Mining We propose WIBA, a novel framework and suite of methods that enable the comprehensive understanding of "What Is Being Argued" across contexts. Our approach develops a comprehensive framework that detects: (a) the existence, (b) the topic, and (c) the stance of an argument, correctly accounting for the logical dependence among the three tasks. Our algorithm leverages the fine-tuning and prompt-engineering of Large Language Models. We evaluate our approach and show that it performs well in all the three capabilities. First, we develop and release an Argument Detection model that can classify a piece of text as an argument with an F1 score between 79% and 86% on three different benchmark datasets. Second, we release a language model that can identify the topic being argued in a sentence, be it implicit or explicit, with an average similarity score of 71%, outperforming current naive methods by nearly 40%. Finally, we develop a method for Argument Stance Classification, and evaluate the capability of our approach, showing it achieves a classification F1 score between 71% and 78% across three diverse benchmark datasets. Our evaluation demonstrates that WIBA allows the comprehensive understanding of What Is Being Argued in large corpora across diverse contexts, which is of core interest to many applications in linguistics, communication, and social and computer science. To facilitate accessibility to the advancements outlined in this work, we release WIBA as a free open access platform (wiba.dev). 4 authors · May 1, 2024
- Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models Conventional demographic inference methods have predominantly operated under the supervision of accurately labeled data, yet struggle to adapt to shifting social landscapes and diverse cultural contexts, leading to narrow specialization and limited accuracy in applications. Recently, the emergence of large multimodal models (LMMs) has shown transformative potential across various research tasks, such as visual comprehension and description. In this study, we explore the application of LMMs to demographic inference and introduce a benchmark for both quantitative and qualitative evaluation. Our findings indicate that LMMs possess advantages in zero-shot learning, interpretability, and handling uncurated 'in-the-wild' inputs, albeit with a propensity for off-target predictions. To enhance LMM performance and achieve comparability with supervised learning baselines, we propose a Chain-of-Thought augmented prompting approach, which effectively mitigates the off-target prediction issue. 2 authors · May 24, 2024
- NormAd: A Benchmark for Measuring the Cultural Adaptability of Large Language Models The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub. 5 authors · Apr 18, 2024
- BUGSPHP: A dataset for Automated Program Repair in PHP Automated Program Repair (APR) improves developer productivity by saving debugging and bug-fixing time. While APR has been extensively explored for C/C++ and Java programs, there is little research on bugs in PHP programs due to the lack of a benchmark PHP bug dataset. This is surprising given that PHP has been one of the most widely used server-side languages for over two decades, being used in a variety of contexts such as e-commerce, social networking, and content management. This paper presents a benchmark dataset of PHP bugs on real-world applications called BUGSPHP, which can enable research on analysis, testing, and repair for PHP programs. The dataset consists of training and test datasets, separately curated from GitHub and processed locally. The training dataset includes more than 600,000 bug-fixing commits. The test dataset contains 513 manually validated bug-fixing commits equipped with developer-provided test cases to assess patch correctness. 5 authors · Jan 14, 2024
1 MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation Memes present unique moderation challenges due to their subtle, multimodal interplay of images, text, and social context. Standard systems relying predominantly on explicit textual cues often overlook harmful content camouflaged by irony, symbolism, or cultural references. To address this gap, we introduce MemeSense, an adaptive in-context learning framework that fuses social commonsense reasoning with visually and semantically related reference examples. By encoding crucial task information into a learnable cognitive shift vector, MemeSense effectively balances lexical, visual, and ethical considerations, enabling precise yet context-aware meme intervention. Extensive evaluations on a curated set of implicitly harmful memes demonstrate that MemeSense substantially outperforms strong baselines, paving the way for safer online communities. Code and data available at: https://github.com/sayantan11995/MemeSense 7 authors · Feb 16
- Datasets for Studying Generalization from Easy to Hard Examples We describe new datasets for studying generalization from easy to hard examples. 8 authors · Aug 12, 2021
1 BBQ: A Hand-Built Bias Benchmark for Question Answering It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model's biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model's outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested. 8 authors · Oct 15, 2021
- Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset. 4 authors · May 1, 2024
- Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions. 3 authors · Apr 14
- Assessing the impact of contextual information in hate speech detection In recent years, hate speech has gained great relevance in social networks and other virtual media because of its intensity and its relationship with violent acts against members of protected groups. Due to the great amount of content generated by users, great effort has been made in the research and development of automatic tools to aid the analysis and moderation of this speech, at least in its most threatening forms. One of the limitations of current approaches to automatic hate speech detection is the lack of context. Most studies and resources are performed on data without context; that is, isolated messages without any type of conversational context or the topic being discussed. This restricts the available information to define if a post on a social network is hateful or not. In this work, we provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter. This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic. Classification experiments using state-of-the-art techniques show evidence that adding contextual information improves hate speech detection performance for two proposed tasks (binary and multi-label prediction). We make our code, models, and corpus available for further research. 11 authors · Oct 2, 2022
2 MARRS: Multimodal Reference Resolution System Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background context. In particular, we present different machine learning models to enable handing contextual queries; specifically, one to enable reference resolution, and one to handle context via query rewriting. We also describe how these models complement each other to form a unified, coherent, lightweight system that can understand context while preserving user privacy. 18 authors · Nov 2, 2023
- What Types of COVID-19 Conspiracies are Populated by Twitter Bots? With people moving out of physical public spaces due to containment measures to tackle the novel coronavirus (COVID-19) pandemic, online platforms become even more prominent tools to understand social discussion. Studying social media can be informative to assess how we are collectively coping with this unprecedented global crisis. However, social media platforms are also populated by bots, automated accounts that can amplify certain topics of discussion at the expense of others. In this paper, we study 43.3M English tweets about COVID-19 and provide early evidence of the use of bots to promote political conspiracies in the United States, in stark contrast with humans who focus on public health concerns. 1 authors · Apr 20, 2020
16 Social Skill Training with Large Language Models People rely on social skills like conflict resolution to communicate effectively and to thrive in both work and personal life. However, practice environments for social skills are typically out of reach for most people. How can we make social skill training more available, accessible, and inviting? Drawing upon interdisciplinary research from communication and psychology, this perspective paper identifies social skill barriers to enter specialized fields. Then we present a solution that leverages large language models for social skill training via a generic framework. Our AI Partner, AI Mentor framework merges experiential learning with realistic practice and tailored feedback. This work ultimately calls for cross-disciplinary innovation to address the broader implications for workforce development and social equality. 6 authors · Apr 5, 2024
- Social Chemistry 101: Learning to Reason about Social and Moral Norms Social norms -- the unspoken commonsense rules about acceptable social behavior -- are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes." We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce Social-Chem-101, a large-scale corpus that catalogs 292k rules-of-thumb such as "it is rude to run a blender at 5am" as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people's judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes Social-Chem-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb. 5 authors · Nov 1, 2020
- Beyond Good Intentions: Reporting the Research Landscape of NLP for Social Good With the recent advances in natural language processing (NLP), a vast number of applications have emerged across various use cases. Among the plethora of NLP applications, many academic researchers are motivated to do work that has a positive social impact, in line with the recent initiatives of NLP for Social Good (NLP4SG). However, it is not always obvious to researchers how their research efforts are tackling today's big social problems. Thus, in this paper, we introduce NLP4SGPAPERS, a scientific dataset with three associated tasks that can help identify NLP4SG papers and characterize the NLP4SG landscape by: (1) identifying the papers that address a social problem, (2) mapping them to the corresponding UN Sustainable Development Goals (SDGs), and (3) identifying the task they are solving and the methods they are using. Using state-of-the-art NLP models, we address each of these tasks and use them on the entire ACL Anthology, resulting in a visualization workspace that gives researchers a comprehensive overview of the field of NLP4SG. Our website is available at https://nlp4sg.vercel.app . We released our data at https://huggingface.co/datasets/feradauto/NLP4SGPapers and code at https://github.com/feradauto/nlp4sg . 7 authors · May 9, 2023
- Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world. 3 authors · Oct 21, 2024
- COVID-19 what have we learned? The rise of social machines and connected devices in pandemic management following the concepts of predictive, preventive and personalised medicine A comprehensive bibliographic review with R statistical methods of the COVID pandemic in PubMed literature and Web of Science Core Collection, supported with Google Scholar search. In addition, a case study review of emerging new approaches in different regions, using medical literature, academic literature, news articles and other reliable data sources. Public responses of mistrust about privacy data misuse differ across countries, depending on the chosen public communication strategy. 8 authors · Sep 12, 2020
- Comparing Measures of Linguistic Diversity Across Social Media Language Data and Census Data at Subnational Geographic Areas This paper describes a preliminary study on the comparative linguistic ecology of online spaces (i.e., social media language data) and real-world spaces in Aotearoa New Zealand (i.e., subnational administrative areas). We compare measures of linguistic diversity between these different spaces and discuss how social media users align with real-world populations. The results from the current study suggests that there is potential to use online social media language data to observe spatial and temporal changes in linguistic diversity at subnational geographic areas; however, further work is required to understand how well social media represents real-world behaviour. 3 authors · Aug 20, 2023
- Measuring Social Norms of Large Language Models We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models' ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements. 5 authors · Apr 3, 2024
- Towards Social AI: A Survey on Understanding Social Interactions Social interactions form the foundation of human societies. Artificial intelligence has made significant progress in certain areas, but enabling machines to seamlessly understand social interactions remains an open challenge. It is important to address this gap by endowing machines with social capabilities. We identify three key capabilities needed for effective social understanding: 1) understanding multimodal social cues, 2) understanding multi-party dynamics, and 3) understanding beliefs. Building upon these foundations, we classify and review existing machine learning works on social understanding from the perspectives of verbal, non-verbal, and multimodal social cues. The verbal branch focuses on understanding linguistic signals such as speaker intent, dialogue sentiment, and commonsense reasoning. The non-verbal branch addresses techniques for perceiving social meaning from visual behaviors such as body gestures, gaze patterns, and facial expressions. The multimodal branch covers approaches that integrate verbal and non-verbal multimodal cues to holistically interpret social interactions such as recognizing emotions, conversational dynamics, and social situations. By reviewing the scope and limitations of current approaches and benchmarks, we aim to clarify the development trajectory and illuminate the path towards more comprehensive intelligence for social understanding. We hope this survey will spur further research interest and insights into this area. 11 authors · Sep 5, 2024
- Natural Language Processing in the Legal Domain In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open. 5 authors · Feb 23, 2023
- Detecting Harmful Content On Online Platforms: What Platforms Need Vs. Where Research Efforts Go The proliferation of harmful content on online platforms is a major societal problem, which comes in many different forms including hate speech, offensive language, bullying and harassment, misinformation, spam, violence, graphic content, sexual abuse, self harm, and many other. Online platforms seek to moderate such content to limit societal harm, to comply with legislation, and to create a more inclusive environment for their users. Researchers have developed different methods for automatically detecting harmful content, often focusing on specific sub-problems or on narrow communities, as what is considered harmful often depends on the platform and on the context. We argue that there is currently a dichotomy between what types of harmful content online platforms seek to curb, and what research efforts there are to automatically detect such content. We thus survey existing methods as well as content moderation policies by online platforms in this light and we suggest directions for future work. 11 authors · Feb 27, 2021
- TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview Conversational Information Seeking has evolved rapidly in the last few years with the development of Large Language Models providing the basis for interpreting and responding in a naturalistic manner to user requests. iKAT emphasizes the creation and research of conversational search agents that adapt responses based on the user's prior interactions and present context. This means that the same question might yield varied answers, contingent on the user's profile and preferences. The challenge lies in enabling Conversational Search Agents (CSA) to incorporate personalized context to effectively guide users through the relevant information to them. iKAT's first year attracted seven teams and a total of 24 runs. Most of the runs leveraged Large Language Models (LLMs) in their pipelines, with a few focusing on a generate-then-retrieve approach. 5 authors · Jan 2, 2024
- Empathic Conversations: A Multi-level Dataset of Contextualized Conversations Empathy is a cognitive and emotional reaction to an observed situation of others. Empathy has recently attracted interest because it has numerous applications in psychology and AI, but it is unclear how different forms of empathy (e.g., self-report vs counterpart other-report, concern vs. distress) interact with other affective phenomena or demographics like gender and age. To better understand this, we created the {\it Empathic Conversations} dataset of annotated negative, empathy-eliciting dialogues in which pairs of participants converse about news articles. People differ in their perception of the empathy of others. These differences are associated with certain characteristics such as personality and demographics. Hence, we collected detailed characterization of the participants' traits, their self-reported empathetic response to news articles, their conversational partner other-report, and turn-by-turn third-party assessments of the level of self-disclosure, emotion, and empathy expressed. This dataset is the first to present empathy in multiple forms along with personal distress, emotion, personality characteristics, and person-level demographic information. We present baseline models for predicting some of these features from conversations. 8 authors · May 25, 2022
- The Uli Dataset: An Exercise in Experience Led Annotation of oGBV Online gender based violence has grown concomitantly with adoption of the internet and social media. Its effects are worse in the Global majority where many users use social media in languages other than English. The scale and volume of conversations on the internet has necessitated the need for automated detection of hate speech, and more specifically gendered abuse. There is, however, a lack of language specific and contextual data to build such automated tools. In this paper we present a dataset on gendered abuse in three languages- Hindi, Tamil and Indian English. The dataset comprises of tweets annotated along three questions pertaining to the experience of gender abuse, by experts who identify as women or a member of the LGBTQIA community in South Asia. Through this dataset we demonstrate a participatory approach to creating datasets that drive AI systems. 25 authors · Nov 15, 2023
1 Soccer on Social Media In the era of digitalization, social media has become an integral part of our lives, serving as a significant hub for individuals and businesses to share information, communicate, and engage. This is also the case for professional sports, where leagues, clubs and players are using social media to reach out to their fans. In this respect, a huge amount of time is spent curating multimedia content for various social media platforms and their target users. With the emergence of Artificial Intelligence (AI), AI-based tools for automating content generation and enhancing user experiences on social media have become widely popular. However, to effectively utilize such tools, it is imperative to comprehend the demographics and preferences of users on different platforms, understand how content providers post information in these channels, and how different types of multimedia are consumed by audiences. This report presents an analysis of social media platforms, in terms of demographics, supported multimedia modalities, and distinct features and specifications for different modalities, followed by a comparative case study of select European soccer leagues and teams, in terms of their social media practices. Through this analysis, we demonstrate that social media, while being very important for and widely used by supporters from all ages, also requires a fine-tuned effort on the part of soccer professionals, in order to elevate fan experiences and foster engagement. 6 authors · Oct 18, 2023
- AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society Understanding human behavior and society is a central focus in social sciences, with the rise of generative social science marking a significant paradigmatic shift. By leveraging bottom-up simulations, it replaces costly and logistically challenging traditional experiments with scalable, replicable, and systematic computational approaches for studying complex social dynamics. Recent advances in large language models (LLMs) have further transformed this research paradigm, enabling the creation of human-like generative social agents and realistic simulacra of society. In this paper, we propose AgentSociety, a large-scale social simulator that integrates LLM-driven agents, a realistic societal environment, and a powerful large-scale simulation engine. Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions both among agents and between agents and their environment. Furthermore, we explore the potential of AgentSociety as a testbed for computational social experiments, focusing on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes. These four issues serve as valuable cases for assessing AgentSociety's support for typical research methods -- such as surveys, interviews, and interventions -- as well as for investigating the patterns, causes, and underlying mechanisms of social issues. The alignment between AgentSociety's outcomes and real-world experimental results not only demonstrates its ability to capture human behaviors and their underlying mechanisms, but also underscores its potential as an important platform for social scientists and policymakers. 16 authors · Feb 12
- Survey of Generative Methods for Social Media Analysis This survey draws a broad-stroke, panoramic picture of the State of the Art (SoTA) of the research in generative methods for the analysis of social media data. It fills a void, as the existing survey articles are either much narrower in their scope or are dated. We included two important aspects that currently gain importance in mining and modeling social media: dynamics and networks. Social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, the productivity of teams, etc. Networks, on the other hand, may capture various complex relationships providing additional insight and identifying important patterns that would otherwise go unnoticed. 5 authors · Dec 13, 2021
- Analyzing Norm Violations in Live-Stream Chat Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%. 9 authors · May 18, 2023
- Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset. 1 authors · Apr 9, 2018
- Multi-Source Social Feedback of Online News Feeds The profusion of user generated content caused by the rise of social media platforms has enabled a surge in research relating to fields such as information retrieval, recommender systems, data mining and machine learning. However, the lack of comprehensive baseline data sets to allow a thorough evaluative comparison has become an important issue. In this paper we present a large data set of news items from well-known aggregators such as Google News and Yahoo! News, and their respective social feedback on multiple platforms: Facebook, Google+ and LinkedIn. The data collected relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine. This data set is tailored for evaluative comparisons in predictive analytics tasks, although allowing for tasks in other research areas such as topic detection and tracking, sentiment analysis in short text, first story detection or news recommendation. 2 authors · Jan 22, 2018
- ILiAD: An Interactive Corpus for Linguistic Annotated Data from Twitter Posts Social Media platforms have offered invaluable opportunities for linguistic research. The availability of up-to-date data, coming from any part in the world, and coming from natural contexts, has allowed researchers to study language in real time. One of the fields that has made great use of social media platforms is Corpus Linguistics. There is currently a wide range of projects which have been able to successfully create corpora from social media. In this paper, we present the development and deployment of a linguistic corpus from Twitter posts in English, coming from 26 news agencies and 27 individuals. The main goal was to create a fully annotated English corpus for linguistic analysis. We include information on morphology and syntax, as well as NLP features such as tokenization, lemmas, and n- grams. The information is presented through a range of powerful visualisations for users to explore linguistic patterns in the corpus. With this tool, we aim to contribute to the area of language technologies applied to linguistic research. 1 authors · Jul 22, 2024
- What Food Do We Tweet about on a Rainy Day? Food choice is a complex phenomenon shaped by factors such as taste, ambience, culture or weather. In this paper, we explore food-related tweeting in different weather conditions. We inspect a Latvian food tweet dataset spanning the past decade in conjunction with a weather observation dataset consisting of average temperature, precipitation, and other phenomena. We find which weather conditions lead to specific food information sharing; automatically classify tweet sentiment and discuss how it changes depending on the weather. This research contributes to the growing area of large-scale social network data understanding of food consumers' choices and perceptions. 2 authors · Apr 11, 2023
- Job-related discourse on social media Working adults spend nearly one third of their daily time at their jobs. In this paper, we study job-related social media discourse from a community of users. We use both crowdsourcing and local expertise to train a classifier to detect job-related messages on Twitter. Additionally, we analyze the linguistic differences in a job-related corpus of tweets between individual users vs. commercial accounts. The volumes of job-related tweets from individual users indicate that people use Twitter with distinct monthly, daily, and hourly patterns. We further show that the moods associated with jobs, positive and negative, have unique diurnal rhythms. 6 authors · Nov 15, 2015
1 1024m at SMM4H 2024: Tasks 3, 5 & 6 -- Ensembles of Transformers and Large Language Models for Medical Text Classification Social media is a great source of data for users reporting information and regarding their health and how various things have had an effect on them. This paper presents various approaches using Transformers and Large Language Models and their ensembles, their performance along with advantages and drawbacks for various tasks of SMM4H'24 - Classifying texts on impact of nature and outdoor spaces on the author's mental health (Task 3), Binary classification of tweets reporting their children's health disorders like Asthma, Autism, ADHD and Speech disorder (task 5), Binary classification of users self-reporting their age (task 6). 2 authors · Oct 21, 2024
6 AfriHate: A Multilingual Collection of Hate Speech and Abusive Language Datasets for African Languages Hate speech and abusive language are global phenomena that need socio-cultural background knowledge to be understood, identified, and moderated. However, in many regions of the Global South, there have been several documented occurrences of (1) absence of moderation and (2) censorship due to the reliance on keyword spotting out of context. Further, high-profile individuals have frequently been at the center of the moderation process, while large and targeted hate speech campaigns against minorities have been overlooked. These limitations are mainly due to the lack of high-quality data in the local languages and the failure to include local communities in the collection, annotation, and moderation processes. To address this issue, we present AfriHate: a multilingual collection of hate speech and abusive language datasets in 15 African languages. Each instance in AfriHate is annotated by native speakers familiar with the local culture. We report the challenges related to the construction of the datasets and present various classification baseline results with and without using LLMs. The datasets, individual annotations, and hate speech and offensive language lexicons are available on https://github.com/AfriHate/AfriHate 27 authors · Jan 14 2
- Symbiotic Child Emotional Support with Social Robots and Temporal Knowledge Graphs In current youth-care programs, children with needs (mental health, family issues, learning disabilities, and autism) receive support from youth and family experts as one-to-one assistance at schools or hospitals. Occasionally, social robots have featured in such settings as support roles in a one-to-one interaction with the child. In this paper, we suggest the development of a symbiotic framework for real-time Emotional Support (ES) with social robots Knowledge Graphs (KG). By augmenting a domain-specific corpus from the literature on ES for children (between the age of 8 and 12) and providing scenario-driven context including the history of events, we suggest developing an experimental knowledge-aware ES framework. The framework both guides the social robot in providing ES statements to the child and assists the expert in tracking and interpreting the child's emotional state and related events over time. 4 authors · May 26, 2022
- To Build Our Future, We Must Know Our Past: Contextualizing Paradigm Shifts in Natural Language Processing NLP is in a period of disruptive change that is impacting our methodologies, funding sources, and public perception. In this work, we seek to understand how to shape our future by better understanding our past. We study factors that shape NLP as a field, including culture, incentives, and infrastructure by conducting long-form interviews with 26 NLP researchers of varying seniority, research area, institution, and social identity. Our interviewees identify cyclical patterns in the field, as well as new shifts without historical parallel, including changes in benchmark culture and software infrastructure. We complement this discussion with quantitative analysis of citation, authorship, and language use in the ACL Anthology over time. We conclude by discussing shared visions, concerns, and hopes for the future of NLP. We hope that this study of our field's past and present can prompt informed discussion of our community's implicit norms and more deliberate action to consciously shape the future. 5 authors · Oct 11, 2023
- Trajectories of Change: Approaches for Tracking Knowledge Evolution We explore local vs. global evolution of knowledge systems through the framework of socio-epistemic networks (SEN), applying two complementary methods to a corpus of scientific texts. The framework comprises three interconnected layers-social, semiotic (material), and semantic-proposing a multilayered approach to understanding structural developments of knowledge. To analyse diachronic changes on the semantic layer, we first use information-theoretic measures based on relative entropy to detect semantic shifts, assess their significance, and identify key driving features. Second, variations in document embedding densities reveal changes in semantic neighbourhoods, tracking how concentration of similar documents increase, remain stable, or disperse. This enables us to trace document trajectories based on content (topics) or metadata (authorship, institution). Case studies of Joseph Silk and Hans-J\"urgen Treder illustrate how individual scholar's work aligns with broader disciplinary shifts in general relativity and gravitation research, demonstrating the applications, limitations, and further potential of this approach. 2 authors · Dec 31, 2024
- The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English In this paper we present datasets of Facebook comment threads to mainstream media posts in Slovene and English developed inside the Slovene national project FRENK which cover two topics, migrants and LGBT, and are manually annotated for different types of socially unacceptable discourse (SUD). The main advantages of these datasets compared to the existing ones are identical sampling procedures, producing comparable data across languages and an annotation schema that takes into account six types of SUD and five targets at which SUD is directed. We describe the sampling and annotation procedures, and analyze the annotation distributions and inter-annotator agreements. We consider this dataset to be an important milestone in understanding and combating SUD for both languages. 3 authors · Jun 5, 2019
- ETHOS: an Online Hate Speech Detection Dataset Online hate speech is a recent problem in our society that is rising at a steady pace by leveraging the vulnerabilities of the corresponding regimes that characterise most social media platforms. This phenomenon is primarily fostered by offensive comments, either during user interaction or in the form of a posted multimedia context. Nowadays, giant corporations own platforms where millions of users log in every day, and protection from exposure to similar phenomena appears to be necessary in order to comply with the corresponding legislation and maintain a high level of service quality. A robust and reliable system for detecting and preventing the uploading of relevant content will have a significant impact on our digitally interconnected society. Several aspects of our daily lives are undeniably linked to our social profiles, making us vulnerable to abusive behaviours. As a result, the lack of accurate hate speech detection mechanisms would severely degrade the overall user experience, although its erroneous operation would pose many ethical concerns. In this paper, we present 'ETHOS', a textual dataset with two variants: binary and multi-label, based on YouTube and Reddit comments validated using the Figure-Eight crowdsourcing platform. Furthermore, we present the annotation protocol used to create this dataset: an active sampling procedure for balancing our data in relation to the various aspects defined. Our key assumption is that, even gaining a small amount of labelled data from such a time-consuming process, we can guarantee hate speech occurrences in the examined material. 4 authors · Jun 11, 2020
- Learning Human-Human Interactions in Images from Weak Textual Supervision Interactions between humans are diverse and context-dependent, but previous works have treated them as categorical, disregarding the heavy tail of possible interactions. We propose a new paradigm of learning human-human interactions as free text from a single still image, allowing for flexibility in modeling the unlimited space of situations and relationships between people. To overcome the absence of data labelled specifically for this task, we use knowledge distillation applied to synthetic caption data produced by a large language model without explicit supervision. We show that the pseudo-labels produced by this procedure can be used to train a captioning model to effectively understand human-human interactions in images, as measured by a variety of metrics that measure textual and semantic faithfulness and factual groundedness of our predictions. We further show that our approach outperforms SOTA image captioning and situation recognition models on this task. We will release our code and pseudo-labels along with Waldo and Wenda, a manually-curated test set for still image human-human interaction understanding. 2 authors · Apr 27, 2023
- Large Language Models for Next Point-of-Interest Recommendation The next Point of Interest (POI) recommendation task is to predict users' immediate next POI visit given their historical data. Location-Based Social Network (LBSN) data, which is often used for the next POI recommendation task, comes with challenges. One frequently disregarded challenge is how to effectively use the abundant contextual information present in LBSN data. Previous methods are limited by their numerical nature and fail to address this challenge. In this paper, we propose a framework that uses pretrained Large Language Models (LLMs) to tackle this challenge. Our framework allows us to preserve heterogeneous LBSN data in its original format, hence avoiding the loss of contextual information. Furthermore, our framework is capable of comprehending the inherent meaning of contextual information due to the inclusion of commonsense knowledge. In experiments, we test our framework on three real-world LBSN datasets. Our results show that the proposed framework outperforms the state-of-the-art models in all three datasets. Our analysis demonstrates the effectiveness of the proposed framework in using contextual information as well as alleviating the commonly encountered cold-start and short trajectory problems. 6 authors · Apr 19, 2024
- Tweets Under the Rubble: Detection of Messages Calling for Help in Earthquake Disaster The importance of social media is again exposed in the recent tragedy of the 2023 Turkey and Syria earthquake. Many victims who were trapped under the rubble called for help by posting messages in Twitter. We present an interactive tool to provide situational awareness for missing and trapped people, and disaster relief for rescue and donation efforts. The system (i) collects tweets, (ii) classifies the ones calling for help, (iii) extracts important entity tags, and (iv) visualizes them in an interactive map screen. Our initial experiments show that the performance in terms of the F1 score is up to 98.30 for tweet classification, and 84.32 for entity extraction. The demonstration, dataset, and other related files can be accessed at https://github.com/avaapm/deprem 4 authors · Feb 26, 2023
1 Review of Unsupervised POS Tagging and Its Implications on Language Acquisition An ability that underlies human syntactic knowledge is determining which words can appear in the similar structures (i.e. grouping words by their syntactic categories). These groupings enable humans to combine structures in order to communicate complex meanings. A foundational question is how do children acquire this ability underlying syntactic knowledge. In exploring this process, we will review various engineering approaches whose goal is similar to that of a child's -- without prior syntactic knowledge, correctly identify the parts of speech (POS) of the words in a sample of text. In reviewing these unsupervised tagging efforts, we will discuss common themes that support the advances in the models and their relevance for language acquisition. For example, we discuss how each model judges success (evaluation metrics), the "additional information" that constrains the POS learning (such as orthographic information), and the context used to determine POS (only previous word, words before and after the target, etc). The identified themes pave the way for future investigations into the cognitive processes that underpin the acquisition of syntactic categories and provide a useful layout of current state of the art unsupervised POS tagging models. 1 authors · Dec 15, 2023
- Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior In recent years, offensive, abusive and hateful language, sexism, racism and other types of aggressive and cyberbullying behavior have been manifesting with increased frequency, and in many online social media platforms. In fact, past scientific work focused on studying these forms in popular media, such as Facebook and Twitter. Building on such work, we present an 8-month study of the various forms of abusive behavior on Twitter, in a holistic fashion. Departing from past work, we examine a wide variety of labeling schemes, which cover different forms of abusive behavior, at the same time. We propose an incremental and iterative methodology, that utilizes the power of crowdsourcing to annotate a large scale collection of tweets with a set of abuse-related labels. In fact, by applying our methodology including statistical analysis for label merging or elimination, we identify a reduced but robust set of labels. Finally, we offer a first overview and findings of our collected and annotated dataset of 100 thousand tweets, which we make publicly available for further scientific exploration. 9 authors · Feb 1, 2018
- News Category Dataset People rely on news to know what is happening around the world and inform their daily lives. In today's world, when the proliferation of fake news is rampant, having a large-scale and high-quality source of authentic news articles with the published category information is valuable to learning authentic news' Natural Language syntax and semantics. As part of this work, we present a News Category Dataset that contains around 210k news headlines from the year 2012 to 2022 obtained from HuffPost, along with useful metadata to enable various NLP tasks. In this paper, we also produce some novel insights from the dataset and describe various existing and potential applications of our dataset. 1 authors · Sep 23, 2022
- NormBank: A Knowledge Bank of Situational Social Norms We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments. 5 authors · May 26, 2023
- Retrieving Multimodal Information for Augmented Generation: A Survey In this survey, we review methods that retrieve multimodal knowledge to assist and augment generative models. This group of works focuses on retrieving grounding contexts from external sources, including images, codes, tables, graphs, and audio. As multimodal learning and generative AI have become more and more impactful, such retrieval augmentation offers a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. We provide an in-depth review of retrieval-augmented generation in different modalities and discuss potential future directions. As this is an emerging field, we continue to add new papers and methods. 11 authors · Mar 20, 2023
1 Cyberbullying Detection -- Technical Report 2/2018, Department of Computer Science AGH, University of Science and Technology The research described in this paper concerns automatic cyberbullying detection in social media. There are two goals to achieve: building a gold standard cyberbullying detection dataset and measuring the performance of the Samurai cyberbullying detection system. The Formspring dataset provided in a Kaggle competition was re-annotated as a part of the research. The annotation procedure is described in detail and, unlike many other recent data annotation initiatives, does not use Mechanical Turk for finding people willing to perform the annotation. The new annotation compared to the old one seems to be more coherent since all tested cyberbullying detection system performed better on the former. The performance of the Samurai system is compared with 5 commercial systems and one well-known machine learning algorithm, used for classifying textual content, namely Fasttext. It turns out that Samurai scores the best in all measures (accuracy, precision and recall), while Fasttext is the second-best performing algorithm. 4 authors · Aug 2, 2018
- Report from the NSF Future Directions Workshop on Automatic Evaluation of Dialog: Research Directions and Challenges This is a report on the NSF Future Directions Workshop on Automatic Evaluation of Dialog. The workshop explored the current state of the art along with its limitations and suggested promising directions for future work in this important and very rapidly changing area of research. 16 authors · Mar 18, 2022
- AITA Generating Moral Judgements of the Crowd with Reasoning Morality is a fundamental aspect of human behavior and ethics, influencing how we interact with each other and the world around us. When faced with a moral dilemma, a person's ability to make clear moral judgments can be clouded. Due to many factors such as personal biases, emotions and situational factors people can find it difficult to decide their best course of action. The AmITheAsshole (AITA) subreddit is a forum on the social media platform Reddit that helps people get clarity and objectivity on their predicaments. In the forum people post anecdotes about moral dilemmas they are facing in their lives, seeking validation for their actions or advice on how to navigate the situation from the community. The morality of the actions in each post is classified based on the collective opinion of the community into mainly two labels, "Not The Asshole" (NTA) and "You Are The Asshole" (YTA). This project aims to generate comments with moral reasoning for stories with moral dilemmas using the AITA subreddit as a dataset. While past literature has explored the classification of posts into labels (Alhassan et al., 2022), the generation of comments remains a novel and challenging task. It involves understanding the complex social and ethical considerations in each situation. To address this challenge, we will leverage the vast amount of data on the forum with the goal of generating coherent comments that align with the norms and values of the AITA community. In this endeavor, we aim to evaluate state-of-the-art seq2seq text generation models for their ability to make moral judgments similarly to humans, ultimately producing concise comments providing clear moral stances and advice for the poster. 2 authors · Oct 21, 2023
1 Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace. 5 authors · Dec 3, 2024
- The AI Gap: How Socioeconomic Status Affects Language Technology Interactions Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups. 3 authors · May 17
- Implicit Session Contexts for Next-Item Recommendations Session-based recommender systems capture the short-term interest of a user within a session. Session contexts (i.e., a user's high-level interests or intents within a session) are not explicitly given in most datasets, and implicitly inferring session context as an aggregation of item-level attributes is crude. In this paper, we propose ISCON, which implicitly contextualizes sessions. ISCON first generates implicit contexts for sessions by creating a session-item graph, learning graph embeddings, and clustering to assign sessions to contexts. ISCON then trains a session context predictor and uses the predicted contexts' embeddings to enhance the next-item prediction accuracy. Experiments on four datasets show that ISCON has superior next-item prediction accuracy than state-of-the-art models. A case study of ISCON on the Reddit dataset confirms that assigned session contexts are unique and meaningful. 6 authors · Aug 18, 2022
1 FanChuan: A Multilingual and Graph-Structured Benchmark For Parody Detection and Analysis Parody is an emerging phenomenon on social media, where individuals imitate a role or position opposite to their own, often for humor, provocation, or controversy. Detecting and analyzing parody can be challenging and is often reliant on context, yet it plays a crucial role in understanding cultural values, promoting subcultures, and enhancing self-expression. However, the study of parody is hindered by limited available data and deficient diversity in current datasets. To bridge this gap, we built seven parody datasets from both English and Chinese corpora, with 14,755 annotated users and 21,210 annotated comments in total. To provide sufficient context information, we also collect replies and construct user-interaction graphs to provide richer contextual information, which is lacking in existing datasets. With these datasets, we test traditional methods and Large Language Models (LLMs) on three key tasks: (1) parody detection, (2) comment sentiment analysis with parody, and (3) user sentiment analysis with parody. Our extensive experiments reveal that parody-related tasks still remain challenging for all models, and contextual information plays a critical role. Interestingly, we find that, in certain scenarios, traditional sentence embedding methods combined with simple classifiers can outperform advanced LLMs, i.e. DeepSeek-R1 and GPT-o3, highlighting parody as a significant challenge for LLMs. 12 authors · Feb 23
- Detecting and Characterizing Political Incivility on Social Media Researchers of political communication study the impact and perceptions of political incivility on social media. Yet, so far, relatively few works attempted to automatically detect and characterize political incivility. In our work, we study political incivility in Twitter, presenting several research contributions. First, we present state-of-the-art incivility detection results using a large dataset, which we collected and labeled via crowd sourcing. Importantly, we distinguish between uncivil political speech that is impolite and intolerant anti-democratic discourse. Applying political incivility detection at large-scale, we derive insights regarding the prevalence of this phenomenon across users, and explore the network characteristics of users who are susceptible to disseminating uncivil political content online. Finally, we propose an approach for modeling social context information about the tweet author alongside the tweet content, showing that this leads to significantly improved performance on the task of political incivility detection. This result holds promise for related tasks, such as hate speech and stance detection. 4 authors · May 24, 2023
- Twitter Job/Employment Corpus: A Dataset of Job-Related Discourse Built with Humans in the Loop We present the Twitter Job/Employment Corpus, a collection of tweets annotated by a humans-in-the-loop supervised learning framework that integrates crowdsourcing contributions and expertise on the local community and employment environment. Previous computational studies of job-related phenomena have used corpora collected from workplace social media that are hosted internally by the employers, and so lacks independence from latent job-related coercion and the broader context that an open domain, general-purpose medium such as Twitter provides. Our new corpus promises to be a benchmark for the extraction of job-related topics and advanced analysis and modeling, and can potentially benefit a wide range of research communities in the future. 2 authors · Jan 29, 2019
- Twitter conversations predict the daily confirmed COVID-19 cases As of writing this paper, COVID-19 (Coronavirus disease 2019) has spread to more than 220 countries and territories. Following the outbreak, the pandemic's seriousness has made people more active on social media, especially on the microblogging platforms such as Twitter and Weibo. The pandemic-specific discourse has remained on-trend on these platforms for months now. Previous studies have confirmed the contributions of such socially generated conversations towards situational awareness of crisis events. The early forecasts of cases are essential to authorities to estimate the requirements of resources needed to cope with the outgrowths of the virus. Therefore, this study attempts to incorporate the public discourse in the design of forecasting models particularly targeted for the steep-hill region of an ongoing wave. We propose a sentiment-involved topic-based latent variables search methodology for designing forecasting models from publicly available Twitter conversations. As a use case, we implement the proposed methodology on Australian COVID-19 daily cases and Twitter conversations generated within the country. Experimental results: (i) show the presence of latent social media variables that Granger-cause the daily COVID-19 confirmed cases, and (ii) confirm that those variables offer additional prediction capability to forecasting models. Further, the results show that the inclusion of social media variables introduces 48.83--51.38% improvements on RMSE over the baseline models. We also release the large-scale COVID-19 specific geotagged global tweets dataset, MegaGeoCOV, to the public anticipating that the geotagged data of this scale would aid in understanding the conversational dynamics of the pandemic through other spatial and temporal contexts. 3 authors · Jun 21, 2022
- Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains Social media has become a valuable resource for the study of suicidal ideation and the assessment of suicide risk. Among social media platforms, Reddit has emerged as the most promising one due to its anonymity and its focus on topic-based communities (subreddits) that can be indicative of someone's state of mind or interest regarding mental health disorders such as r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on suicide risk assessment has been the small amount of labeled data. We propose an empirical investigation into several classes of weakly-supervised approaches, and show that using pseudo-labeling based on related issues around mental health (e.g., anxiety, depression) helps improve model performance for suicide risk assessment. 3 authors · Jun 5, 2021
- Real-Time Community Detection in Large Social Networks on a Laptop For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally. 4 authors · Jan 15, 2016
- Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts. 6 authors · Nov 11, 2024
1 BigScience: A Case Study in the Social Construction of a Multilingual Large Language Model The BigScience Workshop was a value-driven initiative that spanned one and half years of interdisciplinary research and culminated in the creation of ROOTS, a 1.6TB multilingual dataset that was used to train BLOOM, one of the largest multilingual language models to date. In addition to the technical outcomes and artifacts, the workshop fostered multidisciplinary collaborations around large models, datasets, and their analysis. This in turn led to a wide range of research publications spanning topics from ethics to law, data governance, modeling choices and distributed training. This paper focuses on the collaborative research aspects of BigScience and takes a step back to look at the challenges of large-scale participatory research, with respect to participant diversity and the tasks required to successfully carry out such a project. Our main goal is to share the lessons we learned from this experience, what we could have done better and what we did well. We show how the impact of such a social approach to scientific research goes well beyond the technical artifacts that were the basis of its inception. 7 authors · Dec 9, 2022
- ConceptCarve: Dynamic Realization of Evidence Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities. 2 authors · Apr 9
5 EgoNormia: Benchmarking Physical Social Norm Understanding Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs. 7 authors · Feb 27 2
2 MM-Soc: Benchmarking Multimodal Large Language Models in Social Media Platforms Social media platforms are hubs for multimodal information exchange, encompassing text, images, and videos, making it challenging for machines to comprehend the information or emotions associated with interactions in online spaces. Multimodal Large Language Models (MLLMs) have emerged as a promising solution to address these challenges, yet struggle with accurately interpreting human emotions and complex contents like misinformation. This paper introduces MM-Soc, a comprehensive benchmark designed to evaluate MLLMs' understanding of multimodal social media content. MM-Soc compiles prominent multimodal datasets and incorporates a novel large-scale YouTube tagging dataset, targeting a range of tasks from misinformation detection, hate speech detection, and social context generation. Through our exhaustive evaluation on ten size-variants of four open-source MLLMs, we have identified significant performance disparities, highlighting the need for advancements in models' social understanding capabilities. Our analysis reveals that, in a zero-shot setting, various types of MLLMs generally exhibit difficulties in handling social media tasks. However, MLLMs demonstrate performance improvements post fine-tuning, suggesting potential pathways for improvement. 5 authors · Feb 21, 2024
- Social Orientation: A New Feature for Dialogue Analysis There are many settings where it is useful to predict and explain the success or failure of a dialogue. Circumplex theory from psychology models the social orientations (e.g., Warm-Agreeable, Arrogant-Calculating) of conversation participants and can be used to predict and explain the outcome of social interactions. Our work is novel in its systematic application of social orientation tags to modeling conversation outcomes. In this paper, we introduce a new data set of dialogue utterances machine-labeled with social orientation tags. We show that social orientation tags improve task performance, especially in low-resource settings, on both English and Chinese language benchmarks. We also demonstrate how social orientation tags help explain the outcomes of social interactions when used in neural models. Based on these results showing the utility of social orientation tags for dialogue outcome prediction tasks, we release our data sets, code, and models that are fine-tuned to predict social orientation tags on dialogue utterances. 6 authors · Feb 25, 2024
1 Reasoning Over Paragraph Effects in Situations A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%. 4 authors · Aug 16, 2019
- Agent-Based Simulations of Online Political Discussions: A Case Study on Elections in Germany User engagement on social media platforms is influenced by historical context, time constraints, and reward-driven interactions. This study presents an agent-based simulation approach that models user interactions, considering past conversation history, motivation, and resource constraints. Utilizing German Twitter data on political discourse, we fine-tune AI models to generate posts and replies, incorporating sentiment analysis, irony detection, and offensiveness classification. The simulation employs a myopic best-response model to govern agent behavior, accounting for decision-making based on expected rewards. Our results highlight the impact of historical context on AI-generated responses and demonstrate how engagement evolves under varying constraints. 8 authors · Mar 31
1 Predicting city safety perception based on visual image content Safety perception measurement has been a subject of interest in many cities of the world. This is due to its social relevance, and to its effect on some local economic activities. Even though people safety perception is a subjective topic, sometimes it is possible to find out common patterns given a restricted geographical and sociocultural context. This paper presents an approach that makes use of image processing and machine learning techniques to detect with high accuracy urban environment patterns that could affect citizen's safety perception. 2 authors · Feb 18, 2019
- Decay No More: A Persistent Twitter Dataset for Learning Social Meaning With the proliferation of social media, many studies resort to social media to construct datasets for developing social meaning understanding systems. For the popular case of Twitter, most researchers distribute tweet IDs without the actual text contents due to the data distribution policy of the platform. One issue is that the posts become increasingly inaccessible over time, which leads to unfair comparisons and a temporal bias in social media research. To alleviate this challenge of data decay, we leverage a paraphrase model to propose a new persistent English Twitter dataset for social meaning (PTSM). PTSM consists of 17 social meaning datasets in 10 categories of tasks. We experiment with two SOTA pre-trained language models and show that our PTSM can substitute the actual tweets with paraphrases with marginal performance loss. 3 authors · Apr 10, 2022
- Less than one percent of words would be affected by gender-inclusive language in German press texts Research on gender and language is tightly knitted to social debates on gender equality and non-discriminatory language use. Psycholinguistic scholars have made significant contributions in this field. However, corpus-based studies that investigate these matters within the context of language use are still rare. In our study, we address the question of how much textual material would actually have to be changed if non-gender-inclusive texts were rewritten to be gender-inclusive. This quantitative measure is an important empirical insight, as a recurring argument against the use of gender-inclusive German is that it supposedly makes written texts too long and complicated. It is also argued that gender-inclusive language has negative effects on language learners. However, such effects are only likely if gender-inclusive texts are very different from those that are not gender-inclusive. In our corpus-linguistic study, we manually annotated German press texts to identify the parts that would have to be changed. Our results show that, on average, less than 1% of all tokens would be affected by gender-inclusive language. This small proportion calls into question whether gender-inclusive German presents a substantial barrier to understanding and learning the language, particularly when we take into account the potential complexities of interpreting masculine generics. 5 authors · Feb 6, 2024
- Conversational Analysis of Daily Dialog Data using Polite Emotional Dialogue Acts Many socio-linguistic cues are used in conversational analysis, such as emotion, sentiment, and dialogue acts. One of the fundamental cues is politeness, which linguistically possesses properties such as social manners useful in conversational analysis. This article presents findings of polite emotional dialogue act associations, where we can correlate the relationships between the socio-linguistic cues. We confirm our hypothesis that the utterances with the emotion classes Anger and Disgust are more likely to be impolite. At the same time, Happiness and Sadness are more likely to be polite. A less expectable phenomenon occurs with dialogue acts Inform and Commissive which contain more polite utterances than Question and Directive. Finally, we conclude on the future work of these findings to extend the learning of social behaviours using politeness. 2 authors · May 5, 2022
- Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available. 4 authors · Feb 16, 2024
- A Material Lens on Coloniality in NLP Coloniality, the continuation of colonial harms beyond "official" colonization, has pervasive effects across society and scientific fields. Natural Language Processing (NLP) is no exception to this broad phenomenon. In this work, we argue that coloniality is implicitly embedded in and amplified by NLP data, algorithms, and software. We formalize this analysis using Actor-Network Theory (ANT): an approach to understanding social phenomena through the network of relationships between human stakeholders and technology. We use our Actor-Network to guide a quantitative survey of the geography of different phases of NLP research, providing evidence that inequality along colonial boundaries increases as NLP builds on itself. Based on this, we argue that combating coloniality in NLP requires not only changing current values but also active work to remove the accumulation of colonial ideals in our foundational data and algorithms. 4 authors · Nov 14, 2023
- CrisisMMD: Multimodal Twitter Datasets from Natural Disasters During natural and man-made disasters, people use social media platforms such as Twitter to post textual and multime- dia content to report updates about injured or dead people, infrastructure damage, and missing or found people among other information types. Studies have revealed that this on- line information, if processed timely and effectively, is ex- tremely useful for humanitarian organizations to gain situational awareness and plan relief operations. In addition to the analysis of textual content, recent studies have shown that imagery content on social media can boost disaster response significantly. Despite extensive research that mainly focuses on textual content to extract useful information, limited work has focused on the use of imagery content or the combination of both content types. One of the reasons is the lack of labeled imagery data in this domain. Therefore, in this paper, we aim to tackle this limitation by releasing a large multi-modal dataset collected from Twitter during different natural disasters. We provide three types of annotations, which are useful to address a number of crisis response and management tasks for different humanitarian organizations. 3 authors · May 2, 2018
- Socio-Culturally Aware Evaluation Framework for LLM-Based Content Moderation With the growth of social media and large language models, content moderation has become crucial. Many existing datasets lack adequate representation of different groups, resulting in unreliable assessments. To tackle this, we propose a socio-culturally aware evaluation framework for LLM-driven content moderation and introduce a scalable method for creating diverse datasets using persona-based generation. Our analysis reveals that these datasets provide broader perspectives and pose greater challenges for LLMs than diversity-focused generation methods without personas. This challenge is especially pronounced in smaller LLMs, emphasizing the difficulties they encounter in moderating such diverse content. 6 authors · Dec 18, 2024
- Should we tweet this? Generative response modeling for predicting reception of public health messaging on Twitter The way people respond to messaging from public health organizations on social media can provide insight into public perceptions on critical health issues, especially during a global crisis such as COVID-19. It could be valuable for high-impact organizations such as the US Centers for Disease Control and Prevention (CDC) or the World Health Organization (WHO) to understand how these perceptions impact reception of messaging on health policy recommendations. We collect two datasets of public health messages and their responses from Twitter relating to COVID-19 and Vaccines, and introduce a predictive method which can be used to explore the potential reception of such messages. Specifically, we harness a generative model (GPT-2) to directly predict probable future responses and demonstrate how it can be used to optimize expected reception of important health guidance. Finally, we introduce a novel evaluation scheme with extensive statistical testing which allows us to conclude that our models capture the semantics and sentiment found in actual public health responses. 4 authors · Apr 8, 2022
1 Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board This paper presents a dataset with over 3.3M threads and 134.5M posts from the Politically Incorrect board (/pol/) of the imageboard forum 4chan, posted over a period of almost 3.5 years (June 2016-November 2019). To the best of our knowledge, this represents the largest publicly available 4chan dataset, providing the community with an archive of posts that have been permanently deleted from 4chan and are otherwise inaccessible. We augment the data with a set of additional labels, including toxicity scores and the named entities mentioned in each post. We also present a statistical analysis of the dataset, providing an overview of what researchers interested in using it can expect, as well as a simple content analysis, shedding light on the most prominent discussion topics, the most popular entities mentioned, and the toxicity level of each post. Overall, we are confident that our work will motivate and assist researchers in studying and understanding 4chan, as well as its role on the greater Web. For instance, we hope this dataset may be used for cross-platform studies of social media, as well as being useful for other types of research like natural language processing. Finally, our dataset can assist qualitative work focusing on in-depth case studies of specific narratives, events, or social theories. 5 authors · Jan 21, 2020
- EmoMent: An Emotion Annotated Mental Health Corpus from two South Asian Countries People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively. 8 authors · Aug 17, 2022
- Twitter Data Analysis: Izmir Earthquake Case T\"urkiye is located on a fault line; earthquakes often occur on a large and small scale. There is a need for effective solutions for gathering current information during disasters. We can use social media to get insight into public opinion. This insight can be used in public relations and disaster management. In this study, Twitter posts on Izmir Earthquake that took place on October 2020 are analyzed. We question if this analysis can be used to make social inferences on time. Data mining and natural language processing (NLP) methods are used for this analysis. NLP is used for sentiment analysis and topic modelling. The latent Dirichlet Allocation (LDA) algorithm is used for topic modelling. We used the Bidirectional Encoder Representations from Transformers (BERT) model working with Transformers architecture for sentiment analysis. It is shown that the users shared their goodwill wishes and aimed to contribute to the initiated aid activities after the earthquake. The users desired to make their voices heard by competent institutions and organizations. The proposed methods work effectively. Future studies are also discussed. 3 authors · Dec 2, 2022
- Large Arabic Twitter Dataset on COVID-19 The 2019 coronavirus disease (COVID-19), emerged late December 2019 in China, is now rapidly spreading across the globe. At the time of writing this paper, the number of global confirmed cases has passed two millions and half with over 180,000 fatalities. Many countries have enforced strict social distancing policies to contain the spread of the virus. This have changed the daily life of tens of millions of people, and urged people to turn their discussions online, e.g., via online social media sites like Twitter. In this work, we describe the first Arabic tweets dataset on COVID-19 that we have been collecting since January 1st, 2020. The dataset would help researchers and policy makers in studying different societal issues related to the pandemic. Many other tasks related to behavioral change, information sharing, misinformation and rumors spreading can also be analyzed. 3 authors · Apr 8, 2020
- Mapping Natural Language Commands to Web Elements The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset. 5 authors · Aug 28, 2018
- CoNTACT: A Dutch COVID-19 Adapted BERT for Vaccine Hesitancy and Argumentation Detection We present CoNTACT: a Dutch language model adapted to the domain of COVID-19 tweets. The model was developed by continuing the pre-training phase of RobBERT (Delobelle, 2020) by using 2.8M Dutch COVID-19 related tweets posted in 2021. In order to test the performance of the model and compare it to RobBERT, the two models were tested on two tasks: (1) binary vaccine hesitancy detection and (2) detection of arguments for vaccine hesitancy. For both tasks, not only Twitter but also Facebook data was used to show cross-genre performance. In our experiments, CoNTACT showed statistically significant gains over RobBERT in all experiments for task 1. For task 2, we observed substantial improvements in virtually all classes in all experiments. An error analysis indicated that the domain adaptation yielded better representations of domain-specific terminology, causing CoNTACT to make more accurate classification decisions. 4 authors · Mar 14, 2022
- Many Ways to Be Lonely: Fine-Grained Characterization of Loneliness and Its Potential Changes in COVID-19 Loneliness has been associated with negative outcomes for physical and mental health. Understanding how people express and cope with various forms of loneliness is critical for early screening and targeted interventions to reduce loneliness, particularly among vulnerable groups such as young adults. To examine how different forms of loneliness and coping strategies manifest in loneliness self-disclosure, we built a dataset, FIG-Loneliness (FIne-Grained Loneliness) by using Reddit posts in two young adult-focused forums and two loneliness related forums consisting of a diverse age group. We provided annotations by trained human annotators for binary and fine-grained loneliness classifications of the posts. Trained on FIG-Loneliness, two BERT-based models were used to understand loneliness forms and authors' coping strategies in these forums. Our binary loneliness classification achieved an accuracy above 97%, and fine-grained loneliness category classification reached an average accuracy of 77% across all labeled categories. With FIG-Loneliness and model predictions, we found that loneliness expressions in the young adults related forums were distinct from other forums. Those in young adult-focused forums were more likely to express concerns pertaining to peer relationship, and were potentially more sensitive to geographical isolation impacted by the COVID-19 pandemic lockdown. Also, we showed that different forms of loneliness have differential use in coping strategies. 4 authors · Jan 19, 2022
1 The Koo Dataset: An Indian Microblogging Platform With Global Ambitions Increasingly, alternative platforms are playing a key role in the social media ecosystem. Koo, a microblogging platform based in India, has emerged as a major new social network hosting high profile politicians from several countries (India, Brazil, Nigeria) and many internationally renowned celebrities. This paper presents the largest publicly available Koo dataset, spanning from the platform's founding in early 2020 to September 2023, providing detailed metadata for 72M posts, 75M comments, 40M shares, 284M likes and 1.4M user profiles. Along with the release of the dataset, we provide an overview of the platform including a discussion of the news ecosystem on the platform, hashtag usage and user engagement. Our results highlight the pivotal role that new platforms play in shaping online communities in emerging economies and the Global South, connecting local politicians and public figures with their followers. With Koo's ambition to become the town hall for diverse non-English speaking communities, our dataset offers new opportunities for studying social media beyond a Western context. 3 authors · Jan 15, 2024
1 Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management Despite regulations imposed by nations and social media platforms, such as recent EU regulations targeting digital violence, abusive content persists as a significant challenge. Existing approaches primarily rely on binary solutions, such as outright blocking or banning, yet fail to address the complex nature of abusive speech. In this work, we propose a more comprehensive approach called Demarcation scoring abusive speech based on four aspect -- (i) severity scale; (ii) presence of a target; (iii) context scale; (iv) legal scale -- and suggesting more options of actions like detoxification, counter speech generation, blocking, or, as a final measure, human intervention. Through a thorough analysis of abusive speech regulations across diverse jurisdictions, platforms, and research papers we highlight the gap in preventing measures and advocate for tailored proactive steps to combat its multifaceted manifestations. Our work aims to inform future strategies for effectively addressing abusive speech online. 11 authors · Jun 27, 2024
- What Makes Digital Support Effective? How Therapeutic Skills Affect Clinical Well-Being Online mental health support communities have grown in recent years for providing accessible mental and emotional health support through volunteer counselors. Despite millions of people participating in chat support on these platforms, the clinical effectiveness of these communities on mental health symptoms remains unknown. Furthermore, although volunteers receive some training based on established therapeutic skills studied in face-to-face environments such as active listening and motivational interviewing, it remains understudied how the usage of these skills in this online context affects people's mental health status. In our work, we collaborate with one of the largest online peer support platforms and use both natural language processing and machine learning techniques to measure how one-on-one support chats affect depression and anxiety symptoms. We measure how the techniques and characteristics of support providers, such as using affirmation, empathy, and past experience on the platform, affect support-seekers' mental health changes. We find that online peer support chats improve both depression and anxiety symptoms with a statistically significant but relatively small effect size. Additionally, support providers' techniques such as emphasizing the autonomy of the client lead to better mental health outcomes. However, we also found that some behaviors (e.g. persuading) are actually harmful to depression and anxiety outcomes. Our work provides key understanding for mental health care in the online setting and designing training systems for online support providers. 7 authors · Dec 17, 2023
- Explainable Depression Symptom Detection in Social Media Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations. 3 authors · Oct 20, 2023
- Hypers at ComMA@ICON: Modelling Aggressiveness, Gender Bias and Communal Bias Identification Due to the exponentially increasing reach of social media, it is essential to focus on its negative aspects as it can potentially divide society and incite people into violence. In this paper, we present our system description of work on the shared task ComMA@ICON, where we have to classify how aggressive the sentence is and if the sentence is gender-biased or communal biased. These three could be the primary reasons to cause significant problems in society. As team Hypers we have proposed an approach that utilizes different pretrained models with Attention and mean pooling methods. We were able to get Rank 3 with 0.223 Instance F1 score on Bengali, Rank 2 with 0.322 Instance F1 score on Multi-lingual set, Rank 4 with 0.129 Instance F1 score on Meitei and Rank 5 with 0.336 Instance F1 score on Hindi. The source code and the pretrained models of this work can be found here. 7 authors · Dec 31, 2021
17 SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments. 21 authors · Apr 14 3
- Exploring the Landscape of Natural Language Processing Research As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing amount of research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent to this day. Contributing to closing this gap, we have systematically classified and analyzed research papers included in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields-of-study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work. 3 authors · Jul 20, 2023
- Data Collection of Real-Life Knowledge Work in Context: The RLKWiC Dataset Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior. 5 authors · Apr 16, 2024
- Memotion 3: Dataset on Sentiment and Emotion Analysis of Codemixed Hindi-English Memes Memes are the new-age conveyance mechanism for humor on social media sites. Memes often include an image and some text. Memes can be used to promote disinformation or hatred, thus it is crucial to investigate in details. We introduce Memotion 3, a new dataset with 10,000 annotated memes. Unlike other prevalent datasets in the domain, including prior iterations of Memotion, Memotion 3 introduces Hindi-English Codemixed memes while prior works in the area were limited to only the English memes. We describe the Memotion task, the data collection and the dataset creation methodologies. We also provide a baseline for the task. The baseline code and dataset will be made available at https://github.com/Shreyashm16/Memotion-3.0 12 authors · Mar 17, 2023
1 Let Me Choose: From Verbal Context to Font Selection In this paper, we aim to learn associations between visual attributes of fonts and the verbal context of the texts they are typically applied to. Compared to related work leveraging the surrounding visual context, we choose to focus only on the input text as this can enable new applications for which the text is the only visual element in the document. We introduce a new dataset, containing examples of different topics in social media posts and ads, labeled through crowd-sourcing. Due to the subjective nature of the task, multiple fonts might be perceived as acceptable for an input text, which makes this problem challenging. To this end, we investigate different end-to-end models to learn label distributions on crowd-sourced data and capture inter-subjectivity across all annotations. 6 authors · May 3, 2020
1 SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization We present SODA: the first publicly available, million-scale high-quality social dialogue dataset. Using SODA, we train COSMO: a generalizable conversation agent outperforming previous best-performing agents on both in- and out-of-domain datasets. In contrast to most existing crowdsourced, small-scale dialogue corpora, we distill 1.5M socially-grounded dialogues from a pre-trained language model (InstructGPT; Ouyang et al., 2022). Dialogues are distilled by contextualizing social commonsense knowledge from a knowledge graph (Atomic10x; West et al., 2022). Human evaluation shows that dialogues in SODA are more consistent, specific, and (surprisingly) natural than prior human-authored datasets - e.g., DailyDialog (Li et al., 2017), BlendedSkillTalk (Smith et al., 2020). In addition, extensive evaluations show that COSMO is significantly more natural and consistent on unseen datasets than best-performing dialogue models - e.g., GODEL (Peng et al., 2022), BlenderBot (Roller et al., 2021), DialoGPT (Zhang et al., 2020). Furthermore, it is sometimes even preferred to the original human-written gold responses. We make our data, models, and code public. 11 authors · Dec 20, 2022
- Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT We classify seven months' worth of Belgian COVID-related Tweets using multilingual BERT and relate them to their governments' COVID measures. We classify Tweets by their stated opinion on Belgian government curfew measures (too strict, ok, too loose). We examine the change in topics discussed and views expressed over time and in reference to dates of related events such as implementation of new measures or COVID-19 related announcements in the media. 3 authors · Apr 20, 2021
10 CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset. 6 authors · May 22, 2024 1
- How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement. 2 authors · Jul 16, 2024
- Reducing Unintended Identity Bias in Russian Hate Speech Detection Toxicity has become a grave problem for many online communities and has been growing across many languages, including Russian. Hate speech creates an environment of intimidation, discrimination, and may even incite some real-world violence. Both researchers and social platforms have been focused on developing models to detect toxicity in online communication for a while now. A common problem of these models is the presence of bias towards some words (e.g. woman, black, jew) that are not toxic, but serve as triggers for the classifier due to model caveats. In this paper, we describe our efforts towards classifying hate speech in Russian, and propose simple techniques of reducing unintended bias, such as generating training data with language models using terms and words related to protected identities as context and applying word dropout to such words. 3 authors · Oct 22, 2020
- GeoCoV19: A Dataset of Hundreds of Millions of Multilingual COVID-19 Tweets with Location Information The past several years have witnessed a huge surge in the use of social media platforms during mass convergence events such as health emergencies, natural or human-induced disasters. These non-traditional data sources are becoming vital for disease forecasts and surveillance when preparing for epidemic and pandemic outbreaks. In this paper, we present GeoCoV19, a large-scale Twitter dataset containing more than 524 million multilingual tweets posted over a period of 90 days since February 1, 2020. Moreover, we employ a gazetteer-based approach to infer the geolocation of tweets. We postulate that this large-scale, multilingual, geolocated social media data can empower the research communities to evaluate how societies are collectively coping with this unprecedented global crisis as well as to develop computational methods to address challenges such as identifying fake news, understanding communities' knowledge gaps, building disease forecast and surveillance models, among others. 3 authors · May 22, 2020
- SS-Bench: A Benchmark for Social Story Generation and Evaluation Children with Autism Spectrum Disorder (ASD) often misunderstand social situations and struggle to participate in daily routines. Psychology experts write Social Stories under strict constraints of structural clarity, descriptive orientation, and situational safety to enhance their abilities in these regimes. However, Social Stories are costly in creation and often limited in diversity and timeliness. As Large Language Models (LLMs) become increasingly powerful, there is a growing need for more automated, affordable, and accessible methods to generate Social Stories in real-time with broad coverage. Adapting LLMs to meet the unique and strict constraints of Social Stories is a challenging issue. To this end, we propose SS-Bench, a Social Story Benchmark for generating and evaluating Social Stories. Specifically, we develop a constraint-driven strategy named \textsc{StarSow} to hierarchically prompt LLMs to generate Social Stories and build a benchmark, which has been validated through experiments to fine-tune smaller models for generating qualified Social Stories. Additionally, we introduce Quality Assessment Criteria, employed in human and GPT evaluations, to verify the effectiveness of the generated stories. We hope this work benefits the autism community and catalyzes future research focusing on particular groups. 6 authors · Jun 21, 2024
1 MRAC Track 1: 2nd Workshop on Multimodal, Generative and Responsible Affective Computing With the rapid advancements in multimodal generative technology, Affective Computing research has provoked discussion about the potential consequences of AI systems equipped with emotional intelligence. Affective Computing involves the design, evaluation, and implementation of Emotion AI and related technologies aimed at improving people's lives. Designing a computational model in affective computing requires vast amounts of multimodal data, including RGB images, video, audio, text, and physiological signals. Moreover, Affective Computing research is deeply engaged with ethical considerations at various stages-from training emotionally intelligent models on large-scale human data to deploying these models in specific applications. Fundamentally, the development of any AI system must prioritize its impact on humans, aiming to augment and enhance human abilities rather than replace them, while drawing inspiration from human intelligence in a safe and responsible manner. The MRAC 2024 Track 1 workshop seeks to extend these principles from controlled, small-scale lab environments to real-world, large-scale contexts, emphasizing responsible development. The workshop also aims to highlight the potential implications of generative technology, along with the ethical consequences of its use, to researchers and industry professionals. To the best of our knowledge, this is the first workshop series to comprehensively address the full spectrum of multimodal, generative affective computing from a responsible AI perspective, and this is the second iteration of this workshop. Webpage: https://react-ws.github.io/2024/ 6 authors · Sep 11, 2024
- Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions As Large Language Models (LLMs) continue to evolve, they are increasingly being employed in numerous studies to simulate societies and execute diverse social tasks. However, LLMs are susceptible to societal biases due to their exposure to human-generated data. Given that LLMs are being used to gain insights into various societal aspects, it is essential to mitigate these biases. To that end, our study investigates the presence of implicit gender biases in multi-agent LLM interactions and proposes two strategies to mitigate these biases. We begin by creating a dataset of scenarios where implicit gender biases might arise, and subsequently develop a metric to assess the presence of biases. Our empirical analysis reveals that LLMs generate outputs characterized by strong implicit bias associations (>= 50\% of the time). Furthermore, these biases tend to escalate following multi-agent interactions. To mitigate them, we propose two strategies: self-reflection with in-context examples (ICE); and supervised fine-tuning. Our research demonstrates that both methods effectively mitigate implicit biases, with the ensemble of fine-tuning and self-reflection proving to be the most successful. 2 authors · Oct 3, 2024
- Embedding-based Retrieval in Facebook Search Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines. 9 authors · Jun 20, 2020
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
- Trapping LLM Hallucinations Using Tagged Context Prompts Recent advances in large language models (LLMs), such as ChatGPT, have led to highly sophisticated conversation agents. However, these models suffer from "hallucinations," where the model generates false or fabricated information. Addressing this challenge is crucial, particularly with AI-driven platforms being adopted across various sectors. In this paper, we propose a novel method to recognize and flag instances when LLMs perform outside their domain knowledge, and ensuring users receive accurate information. We find that the use of context combined with embedded tags can successfully combat hallucinations within generative language models. To do this, we baseline hallucination frequency in no-context prompt-response pairs using generated URLs as easily-tested indicators of fabricated data. We observed a significant reduction in overall hallucination when context was supplied along with question prompts for tested generative engines. Lastly, we evaluated how placing tags within contexts impacted model responses and were able to eliminate hallucinations in responses with 98.88% effectiveness. 3 authors · Jun 9, 2023
- Detecting Abusive Albanian The ever growing usage of social media in the recent years has had a direct impact on the increased presence of hate speech and offensive speech in online platforms. Research on effective detection of such content has mainly focused on English and a few other widespread languages, while the leftover majority fail to have the same work put into them and thus cannot benefit from the steady advancements made in the field. In this paper we present Shaj, an annotated Albanian dataset for hate speech and offensive speech that has been constructed from user-generated content on various social media platforms. Its annotation follows the hierarchical schema introduced in OffensEval. The dataset is tested using three different classification models, the best of which achieves an F1 score of 0.77 for the identification of offensive language, 0.64 F1 score for the automatic categorization of offensive types and lastly, 0.52 F1 score for the offensive language target identification. 3 authors · Jul 28, 2021
- DiPCo -- Dinner Party Corpus We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set. 10 authors · Sep 30, 2019
- A Search Engine for Discovery of Scientific Challenges and Directions Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/ 11 authors · Aug 31, 2021
- "I'm in the Bluesky Tonight": Insights from a Year Worth of Social Data Pollution of online social spaces caused by rampaging d/misinformation is a growing societal concern. However, recent decisions to reduce access to social media APIs are causing a shortage of publicly available, recent, social media data, thus hindering the advancement of computational social science as a whole. We present a large, high-coverage dataset of social interactions and user-generated content from Bluesky Social to address this pressing issue. The dataset contains the complete post history of over 4M users (81% of all registered accounts), totalling 235M posts. We also make available social data covering follow, comment, repost, and quote interactions. Since Bluesky allows users to create and bookmark feed generators (i.e., content recommendation algorithms), we also release the full output of several popular algorithms available on the platform, along with their timestamped ``like'' interactions and time of bookmarking. This dataset allows unprecedented analysis of online behavior and human-machine engagement patterns. Notably, it provides ground-truth data for studying the effects of content exposure and self-selection and performing content virality and diffusion analysis. 2 authors · Apr 29, 2024
1 A theory of appropriateness with applications to generative artificial intelligence What is appropriateness? Humans navigate a multi-scale mosaic of interlocking notions of what is appropriate for different situations. We act one way with our friends, another with our family, and yet another in the office. Likewise for AI, appropriate behavior for a comedy-writing assistant is not the same as appropriate behavior for a customer-service representative. What determines which actions are appropriate in which contexts? And what causes these standards to change over time? Since all judgments of AI appropriateness are ultimately made by humans, we need to understand how appropriateness guides human decision making in order to properly evaluate AI decision making and improve it. This paper presents a theory of appropriateness: how it functions in human society, how it may be implemented in the brain, and what it means for responsible deployment of generative AI technology. 14 authors · Dec 25, 2024
- Measuring Bias in Contextualized Word Representations Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1)~propose a template-based method to quantify bias in BERT; (2)~show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3)~conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases. 5 authors · Jun 17, 2019
- LaTeX: Language Pattern-aware Triggering Event Detection for Adverse Experience during Pandemics The COVID-19 pandemic has accentuated socioeconomic disparities across various racial and ethnic groups in the United States. While previous studies have utilized traditional survey methods like the Household Pulse Survey (HPS) to elucidate these disparities, this paper explores the role of social media platforms in both highlighting and addressing these challenges. Drawing from real-time data sourced from Twitter, we analyzed language patterns related to four major types of adverse experiences: loss of employment income (LI), food scarcity (FS), housing insecurity (HI), and unmet needs for mental health services (UM). We first formulate a sparsity optimization problem that extracts low-level language features from social media data sources. Second, we propose novel constraints on feature similarity exploiting prior knowledge about the similarity of the language patterns among the adverse experiences. The proposed problem is challenging to solve due to the non-convexity objective and non-smoothness penalties. We develop an algorithm based on the alternating direction method of multipliers (ADMM) framework to solve the proposed formulation. Extensive experiments and comparisons to other models on real-world social media and the detection of adverse experiences justify the efficacy of our model. 4 authors · Oct 5, 2023
1 User Factor Adaptation for User Embedding via Multitask Learning Language varies across users and their interested fields in social media data: words authored by a user across his/her interests may have different meanings (e.g., cool) or sentiments (e.g., fast). However, most of the existing methods to train user embeddings ignore the variations across user interests, such as product and movie categories (e.g., drama vs. action). In this study, we treat the user interest as domains and empirically examine how the user language can vary across the user factor in three English social media datasets. We then propose a user embedding model to account for the language variability of user interests via a multitask learning framework. The model learns user language and its variations without human supervision. While existing work mainly evaluated the user embedding by extrinsic tasks, we propose an intrinsic evaluation via clustering and evaluate user embeddings by an extrinsic task, text classification. The experiments on the three English-language social media datasets show that our proposed approach can generally outperform baselines via adapting the user factor. 5 authors · Feb 22, 2021
- Semantically Enriched Cross-Lingual Sentence Embeddings for Crisis-related Social Media Texts Tasks such as semantic search and clustering on crisis-related social media texts enhance our comprehension of crisis discourse, aiding decision-making and targeted interventions. Pre-trained language models have advanced performance in crisis informatics, but their contextual embeddings lack semantic meaningfulness. Although the CrisisTransformers family includes a sentence encoder to address the semanticity issue, it remains monolingual, processing only English texts. Furthermore, employing separate models for different languages leads to embeddings in distinct vector spaces, introducing challenges when comparing semantic similarities between multi-lingual texts. Therefore, we propose multi-lingual sentence encoders (CT-XLMR-SE and CT-mBERT-SE) that embed crisis-related social media texts for over 50 languages, such that texts with similar meanings are in close proximity within the same vector space, irrespective of language diversity. Results in sentence encoding and sentence matching tasks are promising, suggesting these models could serve as robust baselines when embedding multi-lingual crisis-related social media texts. The models are publicly available at: https://huggingface.co/crisistransformers. 3 authors · Mar 25, 2024
- Professional Network Matters: Connections Empower Person-Job Fit Online recruitment platforms typically employ Person-Job Fit models in the core service that automatically match suitable job seekers with appropriate job positions. While existing works leverage historical or contextual information, they often disregard a crucial aspect: job seekers' social relationships in professional networks. This paper emphasizes the importance of incorporating professional networks into the Person-Job Fit model. Our innovative approach consists of two stages: (1) defining a Workplace Heterogeneous Information Network (WHIN) to capture heterogeneous knowledge, including professional connections and pre-training representations of various entities using a heterogeneous graph neural network; (2) designing a Contextual Social Attention Graph Neural Network (CSAGNN) that supplements users' missing information with professional connections' contextual information. We introduce a job-specific attention mechanism in CSAGNN to handle noisy professional networks, leveraging pre-trained entity representations from WHIN. We demonstrate the effectiveness of our approach through experimental evaluations conducted across three real-world recruitment datasets from LinkedIn, showing superior performance compared to baseline models. 9 authors · Dec 19, 2023
- Internal and External Impacts of Natural Language Processing Papers We investigate the impacts of NLP research published in top-tier conferences (i.e., ACL, EMNLP, and NAACL) from 1979 to 2024. By analyzing citations from research articles and external sources such as patents, media, and policy documents, we examine how different NLP topics are consumed both within the academic community and by the broader public. Our findings reveal that language modeling has the widest internal and external influence, while linguistic foundations have lower impacts. We also observe that internal and external impacts generally align, but topics like ethics, bias, and fairness show significant attention in policy documents with much fewer academic citations. Additionally, external domains exhibit distinct preferences, with patents focusing on practical NLP applications and media and policy documents engaging more with the societal implications of NLP models. 1 authors · May 21
- Towards Characterizing COVID-19 Awareness on Twitter The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics. 3 authors · May 17, 2020
- Adposition and Case Supersenses v2.6: Guidelines for English This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/ 11 authors · Apr 7, 2017
- Social Simulacra: Creating Populated Prototypes for Social Computing Systems Social computing prototypes probe the social behaviors that may arise in an envisioned system design. This prototyping practice is currently limited to recruiting small groups of people. Unfortunately, many challenges do not arise until a system is populated at a larger scale. Can a designer understand how a social system might behave when populated, and make adjustments to the design before the system falls prey to such challenges? We introduce social simulacra, a prototyping technique that generates a breadth of realistic social interactions that may emerge when a social computing system is populated. Social simulacra take as input the designer's description of a community's design -- goal, rules, and member personas -- and produce as output an instance of that design with simulated behavior, including posts, replies, and anti-social behaviors. We demonstrate that social simulacra shift the behaviors that they generate appropriately in response to design changes, and that they enable exploration of "what if?" scenarios where community members or moderators intervene. To power social simulacra, we contribute techniques for prompting a large language model to generate thousands of distinct community members and their social interactions with each other; these techniques are enabled by the observation that large language models' training data already includes a wide variety of positive and negative behavior on social media platforms. In evaluations, we show that participants are often unable to distinguish social simulacra from actual community behavior and that social computing designers successfully refine their social computing designs when using social simulacra. 6 authors · Aug 8, 2022
- Not Good Times for Lies: Misinformation Detection on the Russia-Ukraine War, COVID-19, and Refugees Misinformation spread in online social networks is an urgent-to-solve problem having harmful consequences that threaten human health, public safety, economics, and so on. In this study, we construct a novel dataset, called MiDe-22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels under several recent events, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. Moreover, we provide the user engagements to the tweets in terms of likes, replies, retweets, and quotes. We present a detailed data analysis with descriptive statistics and temporal analysis, and provide the experimental results of a benchmark evaluation for misinformation detection on our novel dataset. 4 authors · Oct 11, 2022
- Do language models practice what they preach? Examining language ideologies about gendered language reform encoded in LLMs We study language ideologies in text produced by LLMs through a case study on English gendered language reform (related to role nouns like congressperson/-woman/-man, and singular they). First, we find political bias: when asked to use language that is "correct" or "natural", LLMs use language most similarly to when asked to align with conservative (vs. progressive) values. This shows how LLMs' metalinguistic preferences can implicitly communicate the language ideologies of a particular political group, even in seemingly non-political contexts. Second, we find LLMs exhibit internal inconsistency: LLMs use gender-neutral variants more often when more explicit metalinguistic context is provided. This shows how the language ideologies expressed in text produced by LLMs can vary, which may be unexpected to users. We discuss the broader implications of these findings for value alignment. 4 authors · Sep 20, 2024
- Offensive Language and Hate Speech Detection for Danish The presence of offensive language on social media platforms and the implications this poses is becoming a major concern in modern society. Given the enormous amount of content created every day, automatic methods are required to detect and deal with this type of content. Until now, most of the research has focused on solving the problem for the English language, while the problem is multilingual. We construct a Danish dataset containing user-generated comments from Reddit and Facebook. It contains user generated comments from various social media platforms, and to our knowledge, it is the first of its kind. Our dataset is annotated to capture various types and target of offensive language. We develop four automatic classification systems, each designed to work for both the English and the Danish language. In the detection of offensive language in English, the best performing system achieves a macro averaged F1-score of 0.74, and the best performing system for Danish achieves a macro averaged F1-score of 0.70. In the detection of whether or not an offensive post is targeted, the best performing system for English achieves a macro averaged F1-score of 0.62, while the best performing system for Danish achieves a macro averaged F1-score of 0.73. Finally, in the detection of the target type in a targeted offensive post, the best performing system for English achieves a macro averaged F1-score of 0.56, and the best performing system for Danish achieves a macro averaged F1-score of 0.63. Our work for both the English and the Danish language captures the type and targets of offensive language, and present automatic methods for detecting different kinds of offensive language such as hate speech and cyberbullying. 2 authors · Aug 13, 2019
- Teaching LLMs at Charles University: Assignments and Activities This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers. 7 authors · Jul 29, 2024
1 Training program on sign language: social inclusion through Virtual Reality in ISENSE project Structured hand gestures that incorporate visual motions and signs are used in sign language. Sign language is a valuable means of daily communication for individuals who are deaf or have speech impairments, but it is still rare among hearing people, and fewer are capable of understand it. Within the academic context, parents and teachers play a crucial role in supporting deaf students from childhood by facilitating their learning of sign language. In the last years, among all the teaching tools useful for learning sign language, the use of Virtual Reality (VR) has increased, as it has been demonstrated to improve retention, memory and attention during the learning process. The ISENSE project has been created to assist students with deafness during their academic life by proposing different technological tools for teaching sign language to the hearing community in the academic context. As part of the ISENSE project, this work aims to develop an application for Spanish and Italian sign language recognition that exploits the VR environment to quickly and easily create a comprehensive database of signs and an Artificial Intelligence (AI)-based software to accurately classify and recognize static and dynamic signs: from letters to sentences. 7 authors · Jan 15, 2024
- "Es geht um Respekt, nicht um Technologie": Erkenntnisse aus einem Interessensgruppen-übergreifenden Workshop zu genderfairer Sprache und Sprachtechnologie With the increasing attention non-binary people receive in Western societies, strategies of gender-fair language have started to move away from binary (only female/male) concepts of gender. Nevertheless, hardly any approaches to take these identities into account into machine translation models exist so far. A lack of understanding of the socio-technical implications of such technologies risks further reproducing linguistic mechanisms of oppression and mislabelling. In this paper, we describe the methods and results of a workshop on gender-fair language and language technologies, which was led and organised by ten researchers from TU Wien, St. P\"olten UAS, FH Campus Wien and the University of Vienna and took place in Vienna in autumn 2021. A wide range of interest groups and their representatives were invited to ensure that the topic could be dealt with holistically. Accordingly, we aimed to include translators, machine translation experts and non-binary individuals (as "community experts") on an equal footing. Our analysis shows that gender in machine translation requires a high degree of context sensitivity, that developers of such technologies need to position themselves cautiously in a process still under social negotiation, and that flexible approaches seem most adequate at present. We then illustrate steps that follow from our results for the field of gender-fair language technologies so that technological developments can adequately line up with social advancements. ---- Mit zunehmender gesamtgesellschaftlicher Wahrnehmung nicht-bin\"arer Personen haben sich in den letzten Jahren auch Konzepte von genderfairer Sprache von der bisher verwendeten Binarit\"at (weiblich/m\"annlich) entfernt. Trotzdem gibt es bislang nur wenige Ans\"atze dazu, diese Identit\"aten in maschineller \"Ubersetzung abzubilden. Ein fehlendes Verst\"andnis unterschiedlicher sozio-technischer Implikationen derartiger Technologien birgt in sich die Gefahr, fehlerhafte Ansprachen und Bezeichnungen sowie sprachliche Unterdr\"uckungsmechanismen zu reproduzieren. In diesem Beitrag beschreiben wir die Methoden und Ergebnisse eines Workshops zu genderfairer Sprache in technologischen Zusammenh\"angen, der im Herbst 2021 in Wien stattgefunden hat. Zehn Forscher*innen der TU Wien, FH St. P\"olten, FH Campus Wien und Universit\"at Wien organisierten und leiteten den Workshop. Dabei wurden unterschiedlichste Interessensgruppen und deren Vertreter*innen breit gestreut eingeladen, um sicherzustellen, dass das Thema holistisch behandelt werden kann. Dementsprechend setzten wir uns zum Ziel, Machine-Translation-Entwickler*innen, \"Ubersetzer*innen, und nicht-bin\"are Privatpersonen (als "Lebenswelt-Expert*innen") gleichberechtigt einzubinden. Unsere Analyse zeigt, dass Geschlecht in maschineller \"Ubersetzung eine mageblich kontextsensible Herangehensweise erfordert, die Entwicklung von Sprachtechnologien sich vorsichtig in einem sich noch in Aushandlung befindlichen gesellschaftlichen Prozess positionieren muss, und flexible Ans\"atze derzeit am ad\"aquatesten erscheinen. Wir zeigen auf, welche n\"achsten Schritte im Bereich genderfairer Technologien notwendig sind, damit technische mit sozialen Entwicklungen mithalten k\"onnen. 5 authors · Sep 6, 2022
- Contrastive Learning of Sociopragmatic Meaning in Social Media Recent progress in representation and contrastive learning in NLP has not widely considered the class of sociopragmatic meaning (i.e., meaning in interaction within different language communities). To bridge this gap, we propose a novel framework for learning task-agnostic representations transferable to a wide range of sociopragmatic tasks (e.g., emotion, hate speech, humor, sarcasm). Our framework outperforms other contrastive learning frameworks for both in-domain and out-of-domain data, across both the general and few-shot settings. For example, compared to two popular pre-trained language models, our method obtains an improvement of 11.66 average F_1 on 16 datasets when fine-tuned on only 20 training samples per dataset.Our code is available at: https://github.com/UBC-NLP/infodcl 3 authors · Mar 15, 2022
- Language (Technology) is Power: A Critical Survey of "Bias" in NLP We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities. 4 authors · May 28, 2020
- Sentiment Frames for Attitude Extraction in Russian Texts can convey several types of inter-related information concerning opinions and attitudes. Such information includes the author's attitude towards mentioned entities, attitudes of the entities towards each other, positive and negative effects on the entities in the described situations. In this paper, we described the lexicon RuSentiFrames for Russian, where predicate words and expressions are collected and linked to so-called sentiment frames conveying several types of presupposed information on attitudes and effects. We applied the created frames in the task of extracting attitudes from a large news collection. 2 authors · Jun 19, 2020
- Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu. 6 authors · Jan 11, 2022
2 Internet-Augmented Dialogue Generation The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020). 3 authors · Jul 15, 2021
- Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF. 5 authors · Feb 10, 2014
- AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks. 2 authors · May 7, 2021
2 Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful. 5 authors · Nov 9, 2023
- The Drift of #MyBodyMyChoice Discourse on Twitter #MyBodyMyChoice is a well-known hashtag originally created to advocate for women's rights, often used in discourse about abortion and bodily autonomy. The Covid-19 outbreak prompted governments to take containment measures such as vaccination campaigns and mask mandates. Population groups opposed to such measures started to use the slogan "My Body My Choice" to claim their bodily autonomy. In this paper, we investigate whether the discourse around the hashtag #MyBodyMyChoice on Twitter changed its usage after the Covid-19 outbreak. We observe that the conversation around the hashtag changed in two ways. First, semantically, the hashtag #MyBodyMyChoice drifted towards conversations around Covid-19, especially in messages opposed to containment measures. Second, while before the pandemic users used to share content produced by experts and authorities, after Covid-19 the users' attention has shifted towards individuals. 6 authors · May 10, 2022
- Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information Code completion aims at speeding up code writing by recommending to developers the next tokens they are likely to type. Deep Learning (DL) models pushed the boundaries of code completion by redefining what these coding assistants can do: We moved from predicting few code tokens to automatically generating entire functions. One important factor impacting the performance of DL-based code completion techniques is the context provided as input. With "context" we refer to what the model knows about the code to complete. In a simple scenario, the DL model might be fed with a partially implemented function to complete. In this case, the context is represented by the incomplete function and, based on it, the model must generate a prediction. It is however possible to expand such a context to include additional information, like the whole source code file containing the function to complete, which could be useful to boost the prediction performance. In this work, we present an empirical study investigating how the performance of a DL-based code completion technique is affected by different contexts. We experiment with 8 types of contexts and their combinations. These contexts include: (i) coding contexts, featuring information extracted from the code base in which the code completion is invoked (e.g., code components structurally related to the one to "complete"); (ii) process context, with information aimed at depicting the current status of the project in which a code completion task is triggered (e.g., a textual representation of open issues relevant for the code to complete); and (iii) developer contexts, capturing information about the developer invoking the code completion (e.g., the APIs frequently used). Our results show that additional contextual information can benefit the performance of DL-based code completion, with relative improvements up to +22% in terms of correct predictions. 3 authors · Jan 9
- Left 3-Engel elements in groups: A survey We survey left 3-Engel elements in groups. 6 authors · Jun 11, 2023
9 Evaluating the Social Impact of Generative AI Systems in Systems and Society Generative AI systems across modalities, ranging from text, image, audio, and video, have broad social impacts, but there exists no official standard for means of evaluating those impacts and which impacts should be evaluated. We move toward a standard approach in evaluating a generative AI system for any modality, in two overarching categories: what is able to be evaluated in a base system that has no predetermined application and what is able to be evaluated in society. We describe specific social impact categories and how to approach and conduct evaluations in the base technical system, then in people and society. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to all modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what is able to be evaluated in society, each with their own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm. We are concurrently crafting an evaluation repository for the AI research community to contribute existing evaluations along the given categories. This version will be updated following a CRAFT session at ACM FAccT 2023. 18 authors · Jun 9, 2023
- DADIT: A Dataset for Demographic Classification of Italian Twitter Users and a Comparison of Prediction Methods Social scientists increasingly use demographically stratified social media data to study the attitudes, beliefs, and behavior of the general public. To facilitate such analyses, we construct, validate, and release publicly the representative DADIT dataset of 30M tweets of 20k Italian Twitter users, along with their bios and profile pictures. We enrich the user data with high-quality labels for gender, age, and location. DADIT enables us to train and compare the performance of various state-of-the-art models for the prediction of the gender and age of social media users. In particular, we investigate if tweets contain valuable information for the task, since popular classifiers like M3 don't leverage them. Our best XLM-based classifier improves upon the commonly used competitor M3 by up to 53% F1. Especially for age prediction, classifiers profit from including tweets as features. We also confirm these findings on a German test set. 5 authors · Mar 8, 2024
- Linking Named Entities in Diderot's Encyclopédie to Wikidata Diderot's Encyclop\'edie is a reference work from XVIIIth century in Europe that aimed at collecting the knowledge of its era. Wikipedia has the same ambition with a much greater scope. However, the lack of digital connection between the two encyclopedias may hinder their comparison and the study of how knowledge has evolved. A key element of Wikipedia is Wikidata that backs the articles with a graph of structured data. In this paper, we describe the annotation of more than 10,300 of the Encyclop\'edie entries with Wikidata identifiers enabling us to connect these entries to the graph. We considered geographic and human entities. The Encyclop\'edie does not contain biographic entries as they mostly appear as subentries of locations. We extracted all the geographic entries and we completely annotated all the entries containing a description of human entities. This represents more than 2,600 links referring to locations or human entities. In addition, we annotated more than 9,500 entries having a geographic content only. We describe the annotation process as well as application examples. This resource is available at https://github.com/pnugues/encyclopedie_1751 1 authors · Jun 5, 2024
4 Foundations of Large Language Models This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models. 2 authors · Jan 15
1 SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website. 6 authors · Aug 7, 2020
- Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT. 8 authors · Feb 14, 2024
- Regionalized models for Spanish language variations based on Twitter Spanish is one of the most spoken languages in the globe, but not necessarily Spanish is written and spoken in the same way in different countries. Understanding local language variations can help to improve model performances on regional tasks, both understanding local structures and also improving the message's content. For instance, think about a machine learning engineer who automatizes some language classification task on a particular region or a social scientist trying to understand a regional event with echoes on social media; both can take advantage of dialect-based language models to understand what is happening with more contextual information hence more precision. This manuscript presents and describes a set of regionalized resources for the Spanish language built on four-year Twitter public messages geotagged in 26 Spanish-speaking countries. We introduce word embeddings based on FastText, language models based on BERT, and per-region sample corpora. We also provide a broad comparison among regions covering lexical and semantical similarities; as well as examples of using regional resources on message classification tasks. 5 authors · Oct 12, 2021
23 Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context. 6 authors · Jun 29, 2024 1
- Proceedings of the First International Workshop on Deep Learning and Music Proceedings of the First International Workshop on Deep Learning and Music, joint with IJCNN, Anchorage, US, May 17-18, 2017 2 authors · Jun 27, 2017
- Into the crossfire: evaluating the use of a language model to crowdsource gun violence reports Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations. 3 authors · Jan 16, 2024
- WhyAct: Identifying Action Reasons in Lifestyle Vlogs We aim to automatically identify human action reasons in online videos. We focus on the widespread genre of lifestyle vlogs, in which people perform actions while verbally describing them. We introduce and make publicly available the WhyAct dataset, consisting of 1,077 visual actions manually annotated with their reasons. We describe a multimodal model that leverages visual and textual information to automatically infer the reasons corresponding to an action presented in the video. 5 authors · Sep 6, 2021
- Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications. 4 authors · Apr 14
- What's Mine becomes Yours: Defining, Annotating and Detecting Context-Dependent Paraphrases in News Interview Dialogs Best practices for high conflict conversations like counseling or customer support almost always include recommendations to paraphrase the previous speaker. Although paraphrase classification has received widespread attention in NLP, paraphrases are usually considered independent from context, and common models and datasets are not applicable to dialog settings. In this work, we investigate paraphrases in dialog (e.g., Speaker 1: "That book is mine." becomes Speaker 2: "That book is yours."). We provide an operationalization of context-dependent paraphrases, and develop a training for crowd-workers to classify paraphrases in dialog. We introduce a dataset with utterance pairs from NPR and CNN news interviews annotated for context-dependent paraphrases. To enable analyses on label variation, the dataset contains 5,581 annotations on 600 utterance pairs. We present promising results with in-context learning and with token classification models for automatic paraphrase detection in dialog. 3 authors · Apr 9, 2024
- SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets. 3 authors · Dec 21, 2024
40 Lost in the Middle: How Language Models Use Long Contexts While recent language models have the ability to take long contexts as input, relatively little is known about how well the language models use longer context. We analyze language model performance on two tasks that require identifying relevant information within their input contexts: multi-document question answering and key-value retrieval. We find that performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades when models must access relevant information in the middle of long contexts. Furthermore, performance substantially decreases as the input context grows longer, even for explicitly long-context models. Our analysis provides a better understanding of how language models use their input context and provides new evaluation protocols for future long-context models. 7 authors · Jul 6, 2023 3
- A Longitudinal Dataset of Twitter ISIS Users We present a large longitudinal dataset of tweets from two sets of users that are suspected to be affiliated with ISIS. These sets of users are identified based on a prior study and a campaign aimed at shutting down ISIS Twitter accounts. These users have engaged with known ISIS accounts at least once during 2014-2015 and are still active as of 2021. Some of them have directly supported the ISIS users and their tweets by retweeting them, and some of the users that have quoted tweets of ISIS, have uncertain connections to ISIS seed accounts. This study and the dataset represent a unique approach to analyzing ISIS data. Although much research exists on ISIS online activities, few studies have focused on individual accounts. Our approach to validating accounts as well as developing a framework for differentiating accounts' functionality (e.g., propaganda versus operational planning) offers a foundation for future research. We perform some descriptive statistics and preliminary analyses on our collected data to provide deeper insight and highlight the significance and practicality of such analyses. We further discuss several cross-disciplinary potential use cases and research directions. 4 authors · Feb 2, 2022
- Long Context vs. RAG for LLMs: An Evaluation and Revisits Extending context windows (i.e., Long Context, LC) and using retrievers to selectively access relevant information (i.e., Retrieval-Augmented Generation, RAG) are the two main strategies to enable LLMs to incorporate extremely long external contexts. This paper revisits recent studies on this topic, highlighting their key insights and discrepancies. We then provide a more comprehensive evaluation by filtering out questions answerable without external context, identifying the most effective retrieval methods, and expanding the datasets. We show that LC generally outperforms RAG in question-answering benchmarks, especially for Wikipedia-based questions. Summarization-based retrieval performs comparably to LC, while chunk-based retrieval lags behind. However, RAG has advantages in dialogue-based and general question queries. These insights underscore the trade-offs between RAG and LC strategies, offering guidance for future optimization of LLMs with external knowledge sources. We also provide an in-depth discussion on this topic, highlighting the overlooked importance of context relevance in existing studies. 4 authors · Dec 27, 2024
- AI4D -- African Language Program Advances in speech and language technologies enable tools such as voice-search, text-to-speech, speech recognition and machine translation. These are however only available for high resource languages like English, French or Chinese. Without foundational digital resources for African languages, which are considered low-resource in the digital context, these advanced tools remain out of reach. This work details the AI4D - African Language Program, a 3-part project that 1) incentivised the crowd-sourcing, collection and curation of language datasets through an online quantitative and qualitative challenge, 2) supported research fellows for a period of 3-4 months to create datasets annotated for NLP tasks, and 3) hosted competitive Machine Learning challenges on the basis of these datasets. Key outcomes of the work so far include 1) the creation of 9+ open source, African language datasets annotated for a variety of ML tasks, and 2) the creation of baseline models for these datasets through hosting of competitive ML challenges. 18 authors · Apr 6, 2021
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
- CommunityLM: Probing Partisan Worldviews from Language Models As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet. 4 authors · Sep 15, 2022
- Global Voices, Local Biases: Socio-Cultural Prejudices across Languages Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models. All code, data and results are available here: https://github.com/iamshnoo/weathub. 4 authors · Oct 26, 2023
- SDOH-NLI: a Dataset for Inferring Social Determinants of Health from Clinical Notes Social and behavioral determinants of health (SDOH) play a significant role in shaping health outcomes, and extracting these determinants from clinical notes is a first step to help healthcare providers systematically identify opportunities to provide appropriate care and address disparities. Progress on using NLP methods for this task has been hindered by the lack of high-quality publicly available labeled data, largely due to the privacy and regulatory constraints on the use of real patients' information. This paper introduces a new dataset, SDOH-NLI, that is based on publicly available notes and which we release publicly. We formulate SDOH extraction as a natural language inference (NLI) task, and provide binary textual entailment labels obtained from human raters for a cross product of a set of social history snippets as premises and SDOH factors as hypotheses. Our dataset differs from standard NLI benchmarks in that our premises and hypotheses are obtained independently. We evaluate both "off-the-shelf" entailment models as well as models fine-tuned on our data, and highlight the ways in which our dataset appears more challenging than commonly used NLI datasets. 5 authors · Oct 27, 2023
8 The FIGNEWS Shared Task on News Media Narratives We present an overview of the FIGNEWS shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. The shared task addresses bias and propaganda annotation in multilingual news posts. We focus on the early days of the Israel War on Gaza as a case study. The task aims to foster collaboration in developing annotation guidelines for subjective tasks by creating frameworks for analyzing diverse narratives highlighting potential bias and propaganda. In a spirit of fostering and encouraging diversity, we address the problem from a multilingual perspective, namely within five languages: English, French, Arabic, Hebrew, and Hindi. A total of 17 teams participated in two annotation subtasks: bias (16 teams) and propaganda (6 teams). The teams competed in four evaluation tracks: guidelines development, annotation quality, annotation quantity, and consistency. Collectively, the teams produced 129,800 data points. Key findings and implications for the field are discussed. 8 authors · Jul 25, 2024 2
- A Public Dataset Tracking Social Media Discourse about the 2024 U.S. Presidential Election on Twitter/X In this paper, we introduce the first release of a large-scale dataset capturing discourse on X (a.k.a., Twitter) related to the upcoming 2024 U.S. Presidential Election. Our dataset comprises 22 million publicly available posts on X.com, collected from May 1, 2024, to July 31, 2024, using a custom-built scraper, which we describe in detail. By employing targeted keywords linked to key political figures, events, and emerging issues, we aligned data collection with the election cycle to capture evolving public sentiment and the dynamics of political engagement on social media. This dataset offers researchers a robust foundation to investigate critical questions about the influence of social media in shaping political discourse, the propagation of election-related narratives, and the spread of misinformation. We also present a preliminary analysis that highlights prominent hashtags and keywords within the dataset, offering initial insights into the dominant themes and conversations occurring in the lead-up to the election. Our dataset is available at: url{https://github.com/sinking8/usc-x-24-us-election 6 authors · Nov 1, 2024
- Measuring the Reliability of Hate Speech Annotations: The Case of the European Refugee Crisis Some users of social media are spreading racist, sexist, and otherwise hateful content. For the purpose of training a hate speech detection system, the reliability of the annotations is crucial, but there is no universally agreed-upon definition. We collected potentially hateful messages and asked two groups of internet users to determine whether they were hate speech or not, whether they should be banned or not and to rate their degree of offensiveness. One of the groups was shown a definition prior to completing the survey. We aimed to assess whether hate speech can be annotated reliably, and the extent to which existing definitions are in accordance with subjective ratings. Our results indicate that showing users a definition caused them to partially align their own opinion with the definition but did not improve reliability, which was very low overall. We conclude that the presence of hate speech should perhaps not be considered a binary yes-or-no decision, and raters need more detailed instructions for the annotation. 6 authors · Jan 27, 2017
- GeniL: A Multilingual Dataset on Generalizing Language LLMs are increasingly transforming our digital ecosystem, but they often inherit societal biases learned from their training data, for instance stereotypes associating certain attributes with specific identity groups. While whether and how these biases are mitigated may depend on the specific use cases, being able to effectively detect instances of stereotype perpetuation is a crucial first step. Current methods to assess presence of stereotypes in generated language rely on simple template or co-occurrence based measures, without accounting for the variety of sentential contexts they manifest in. We argue that understanding the sentential context is crucial for detecting instances of generalization. We distinguish two types of generalizations: (1) language that merely mentions the presence of a generalization ("people think the French are very rude"), and (2) language that reinforces such a generalization ("as French they must be rude"), from non-generalizing context ("My French friends think I am rude"). For meaningful stereotype evaluations, we need to reliably distinguish such instances of generalizations. We introduce the new task of detecting generalization in language, and build GeniL, a multilingual dataset of over 50K sentences from 9 languages (English, Arabic, Bengali, Spanish, French, Hindi, Indonesian, Malay, and Portuguese) annotated for instances of generalizations. We demonstrate that the likelihood of a co-occurrence being an instance of generalization is usually low, and varies across different languages, identity groups, and attributes. We build classifiers to detect generalization in language with an overall PR-AUC of 58.7, with varying degrees of performance across languages. Our research provides data and tools to enable a nuanced understanding of stereotype perpetuation, a crucial step towards more inclusive and responsible language technologies. 5 authors · Apr 8, 2024
- Learning to Recognize Musical Genre from Audio We here summarize our experience running a challenge with open data for musical genre recognition. Those notes motivate the task and the challenge design, show some statistics about the submissions, and present the results. 4 authors · Mar 13, 2018
- What country, university or research institute, performed the best on COVID-19? Bibliometric analysis of scientific literature In this article, we conduct data mining to discover the countries, universities and companies, produced or collaborated the most research on Covid-19 since the pandemic started. We present some interesting findings, but despite analysing all available records on COVID-19 from the Web of Science Core Collection, we failed to reach any significant conclusions on how the world responded to the COVID-19 pandemic. Therefore, we increased our analysis to include all available data records on pandemics and epidemics from 1900 to 2020. We discover some interesting results on countries, universities and companies, that produced collaborated most the most in research on pandemic and epidemics. Then we compared the results with the analysing on COVID-19 data records. This has created some interesting findings that are explained and graphically visualised in the article. 6 authors · May 19, 2020
- Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking. 8 authors · Aug 23, 2021
- Participation and Division of Labor in User-Driven Algorithm Audits: How Do Everyday Users Work together to Surface Algorithmic Harms? Recent years have witnessed an interesting phenomenon in which users come together to interrogate potentially harmful algorithmic behaviors they encounter in their everyday lives. Researchers have started to develop theoretical and empirical understandings of these user driven audits, with a hope to harness the power of users in detecting harmful machine behaviors. However, little is known about user participation and their division of labor in these audits, which are essential to support these collective efforts in the future. Through collecting and analyzing 17,984 tweets from four recent cases of user driven audits, we shed light on patterns of user participation and engagement, especially with the top contributors in each case. We also identified the various roles user generated content played in these audits, including hypothesizing, data collection, amplification, contextualization, and escalation. We discuss implications for designing tools to support user driven audits and users who labor to raise awareness of algorithm bias. 9 authors · Apr 4, 2023
- S^3: Social-network Simulation System with Large Language Model-Empowered Agents Social network simulation plays a crucial role in addressing various challenges within social science. It offers extensive applications such as state prediction, phenomena explanation, and policy-making support, among others. In this work, we harness the formidable human-like capabilities exhibited by large language models (LLMs) in sensing, reasoning, and behaving, and utilize these qualities to construct the S^3 system (short for Social network Simulation System). Adhering to the widely employed agent-based simulation paradigm, we employ prompt engineering and prompt tuning techniques to ensure that the agent's behavior closely emulates that of a genuine human within the social network. Specifically, we simulate three pivotal aspects: emotion, attitude, and interaction behaviors. By endowing the agent in the system with the ability to perceive the informational environment and emulate human actions, we observe the emergence of population-level phenomena, including the propagation of information, attitudes, and emotions. We conduct an evaluation encompassing two levels of simulation, employing real-world social network data. Encouragingly, the results demonstrate promising accuracy. This work represents an initial step in the realm of social network simulation empowered by LLM-based agents. We anticipate that our endeavors will serve as a source of inspiration for the development of simulation systems within, but not limited to, social science. 8 authors · Jul 27, 2023
- Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data The COVID-19 pandemic has escalated mental health crises worldwide, with social isolation and economic instability contributing to a rise in suicidal behavior. Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression, Post-Traumatic Stress Disorder (PTSD), Attention-Deficit/Hyperactivity Disorder (ADHD), anxiety disorders, and bipolar disorders. As these conditions develop, signs of suicidal ideation may manifest in social media interactions. Analyzing social media data using artificial intelligence (AI) techniques can help identify patterns of suicidal behavior, providing invaluable insights for suicide prevention agencies, professionals, and broader community awareness initiatives. Machine learning algorithms for this purpose require large volumes of accurately labeled data. Previous research has not fully explored the potential of incorporating explanations in analyzing and labeling longitudinal social media data. In this study, we employed a model explanation method, Layer Integrated Gradients, on top of a fine-tuned state-of-the-art language model, to assign each token from Reddit users' posts an attribution score for predicting suicidal ideation. By extracting and analyzing attributions of tokens from the data, we propose a methodology for preliminary screening of social media posts for suicidal ideation without using large language models during inference. 8 authors · Dec 13, 2023
- Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them. 3 authors · Jul 5, 2024
1 Zero- and Few-Shot Prompting with LLMs: A Comparative Study with Fine-tuned Models for Bangla Sentiment Analysis The rapid expansion of the digital world has propelled sentiment analysis into a critical tool across diverse sectors such as marketing, politics, customer service, and healthcare. While there have been significant advancements in sentiment analysis for widely spoken languages, low-resource languages, such as Bangla, remain largely under-researched due to resource constraints. Furthermore, the recent unprecedented performance of Large Language Models (LLMs) in various applications highlights the need to evaluate them in the context of low-resource languages. In this study, we present a sizeable manually annotated dataset encompassing 33,605 Bangla news tweets and Facebook comments. We also investigate zero- and few-shot in-context learning with several language models, including Flan-T5, GPT-4, and Bloomz, offering a comparative analysis against fine-tuned models. Our findings suggest that monolingual transformer-based models consistently outperform other models, even in zero and few-shot scenarios. To foster continued exploration, we intend to make this dataset and our research tools publicly available to the broader research community. In the spirit of further research, we plan to make this dataset and our experimental resources publicly accessible to the wider research community. 7 authors · Aug 21, 2023
- Named Entity Disambiguation using Deep Learning on Graphs We tackle NED by comparing entities in short sentences with graphs. Creating a context vector from graphs through deep learning is a challenging problem that has never been applied to NED. Our main contribution is to present an experimental study of recent neural techniques, as well as a discussion about which graph features are most important for the disambiguation task. In addition, a new dataset () is created to allow a clean and scalable evaluation of NED with entries, and to be used as a reference in future research. In the end our results show that a Bi-LSTM encoding of the graph triplets performs best, improving upon the baseline models and scoring an F1 value of 91.6% on the test set 5 authors · Oct 22, 2018
- Splits! A Flexible Dataset for Evaluating a Model's Demographic Social Inference Understanding how people of various demographics think, feel, and express themselves (collectively called group expression) is essential for social science and underlies the assessment of bias in Large Language Models (LLMs). While LLMs can effectively summarize group expression when provided with empirical examples, coming up with generalizable theories of how a group's expression manifests in real-world text is challenging. In this paper, we define a new task called Group Theorization, in which a system must write theories that differentiate expression across demographic groups. We make available a large dataset on this task, Splits!, constructed by splitting Reddit posts by neutral topics (e.g. sports, cooking, and movies) and by demographics (e.g. occupation, religion, and race). Finally, we suggest a simple evaluation framework for assessing how effectively a method can generate 'better' theories about group expression, backed by human validation. We publicly release the raw corpora and evaluation scripts for Splits! to help researchers assess how methods infer--and potentially misrepresent--group differences in expression. We make Splits! and our evaluation module available at https://github.com/eyloncaplan/splits. 3 authors · Apr 6
- Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP. 4 authors · May 19, 2023
- Socially Aware Bias Measurements for Hindi Language Representations Language representations are efficient tools used across NLP applications, but they are strife with encoded societal biases. These biases are studied extensively, but with a primary focus on English language representations and biases common in the context of Western society. In this work, we investigate biases present in Hindi language representations with focuses on caste and religion-associated biases. We demonstrate how biases are unique to specific language representations based on the history and culture of the region they are widely spoken in, and how the same societal bias (such as binary gender-associated biases) is encoded by different words and text spans across languages. The discoveries of our work highlight the necessity of culture awareness and linguistic artifacts when modeling language representations, in order to better understand the encoded biases. 5 authors · Oct 15, 2021
- FediverseSharing: A Novel Dataset on Cross-Platform Interaction Dynamics between Threads and Mastodon Users Traditional social media platforms, once envisioned as digital town squares, face growing criticism over corporate control, content moderation, and privacy concerns. Events such as Twitter's acquisition(now X) and major policy changes have driven users toward alternative platforms like Mastodon and Threads. However, this diversification has led to user dispersion and fragmented discussions across isolated social media platforms. To address these issues, federation protocols like ActivityPub have been adopted, with Mastodon leading efforts to build decentralized yet interconnected networks. In March 2024, Threads joined this federation by introducing its Fediverse Sharing service, which enables interactions such as posts, replies, and likes between Threads and Mastodon users as if on a unified platform. Building on this development, we introduce FediverseSharing, the first dataset capturing interactions between 20,000+ Threads users and 20,000+ Mastodon users over a ten-month period. This dataset serves as a foundation for studying cross-platform interactions and the impact of federation as previously two separate platforms integrate. 6 authors · Feb 25
- Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes. 1 authors · Feb 17
- Between welcome culture and border fence. A dataset on the European refugee crisis in German newspaper reports Newspaper reports provide a rich source of information on the unfolding of public debate on specific policy fields that can serve as basis for inquiry in political science. Such debates are often triggered by critical events, which attract public attention and incite the reactions of political actors: crisis sparks the debate. However, due to the challenges of reliable annotation and modeling, few large-scale datasets with high-quality annotation are available. This paper introduces DebateNet2.0, which traces the political discourse on the European refugee crisis in the German quality newspaper taz during the year 2015. The core units of our annotation are political claims (requests for specific actions to be taken within the policy field) and the actors who make them (politicians, parties, etc.). The contribution of this paper is twofold. First, we document and release DebateNet2.0 along with its companion R package, mardyR, guiding the reader through the practical and conceptual issues related to the annotation of policy debates in newspapers. Second, we outline and apply a Discourse Network Analysis (DNA) to DebateNet2.0, comparing two crucial moments of the policy debate on the 'refugee crisis': the migration flux through the Mediterranean in April/May and the one along the Balkan route in September/October. Besides the released resources and the case-study, our contribution is also methodological: we talk the reader through the steps from a newspaper article to a discourse network, demonstrating that there is not just one discourse network for the German migration debate, but multiple ones, depending on the topic of interest (political actors, policy fields, time spans). 6 authors · Nov 19, 2021
- A Survey on Conversational Recommender Systems Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future. 4 authors · Apr 1, 2020
- MiCRO: Multi-interest Candidate Retrieval Online Providing personalized recommendations in an environment where items exhibit ephemerality and temporal relevancy (e.g. in social media) presents a few unique challenges: (1) inductively understanding ephemeral appeal for items in a setting where new items are created frequently, (2) adapting to trends within engagement patterns where items may undergo temporal shifts in relevance, (3) accurately modeling user preferences over this item space where users may express multiple interests. In this work we introduce MiCRO, a generative statistical framework that models multi-interest user preferences and temporal multi-interest item representations. Our framework is specifically formulated to adapt to both new items and temporal patterns of engagement. MiCRO demonstrates strong empirical performance on candidate retrieval experiments performed on two large scale user-item datasets: (1) an open-source temporal dataset of (User, User) follow interactions and (2) a temporal dataset of (User, Tweet) favorite interactions which we will open-source as an additional contribution to the community. 3 authors · Oct 28, 2022
- Current Challenges and Future Directions in Podcast Information Access Podcasts are spoken documents across a wide-range of genres and styles, with growing listenership across the world, and a rapidly lowering barrier to entry for both listeners and creators. The great strides in search and recommendation in research and industry have yet to see impact in the podcast space, where recommendations are still largely driven by word of mouth. In this perspective paper, we highlight the many differences between podcasts and other media, and discuss our perspective on challenges and future research directions in the domain of podcast information access. 14 authors · Jun 16, 2021
- DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. 6 authors · Oct 11, 2017
8 CORG: Generating Answers from Complex, Interrelated Contexts In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (CORG), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. CORG consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that CORG balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches. 4 authors · Apr 24 1
- In-context Interference in Chat-based Large Language Models Large language models (LLMs) have had a huge impact on society due to their impressive capabilities and vast knowledge of the world. Various applications and tools have been created that allow users to interact with these models in a black-box scenario. However, one limitation of this scenario is that users cannot modify the internal knowledge of the model, and the only way to add or modify internal knowledge is by explicitly mentioning it to the model during the current interaction. This learning process is called in-context training, and it refers to training that is confined to the user's current session or context. In-context learning has significant applications, but also has limitations that are seldom studied. In this paper, we present a study that shows how the model can suffer from interference between information that continually flows in the context, causing it to forget previously learned knowledge, which can reduce the model's performance. Along with showing the problem, we propose an evaluation benchmark based on the bAbI dataset. 3 authors · Sep 22, 2023
- Using Language Models to Detect Alarming Student Responses This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system. 3 authors · May 12, 2023
6 BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs' responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM's response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges. We make our dataset and code publicly available at https://github.com/manestay/bordIRlines. 5 authors · Oct 1, 2024 4
- Retrieval Augmented Generation for Dynamic Graph Modeling Modeling dynamic graphs, such as those found in social networks, recommendation systems, and e-commerce platforms, is crucial for capturing evolving relationships and delivering relevant insights over time. Traditional approaches primarily rely on graph neural networks with temporal components or sequence generation models, which often focus narrowly on the historical context of target nodes. This limitation restricts the ability to adapt to new and emerging patterns in dynamic graphs. To address this challenge, we propose a novel framework, Retrieval-Augmented Generation for Dynamic Graph modeling (RAG4DyG), which enhances dynamic graph predictions by incorporating contextually and temporally relevant examples from broader graph structures. Our approach includes a time- and context-aware contrastive learning module to identify high-quality demonstrations and a graph fusion strategy to effectively integrate these examples with historical contexts. The proposed framework is designed to be effective in both transductive and inductive scenarios, ensuring adaptability to previously unseen nodes and evolving graph structures. Extensive experiments across multiple real-world datasets demonstrate the effectiveness of RAG4DyG in improving predictive accuracy and adaptability for dynamic graph modeling. The code and datasets are publicly available at https://github.com/YuxiaWu/RAG4DyG. 3 authors · Aug 26, 2024
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
2 Multi-Modal Framing Analysis of News Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias. 5 authors · Mar 26
1 Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking. 8 authors · Oct 28, 2022
- Cyber Security and Online Safety Education for Schools in the UK: Looking through the Lens of Twitter Data In recent years, digital technologies have grown in many ways. As a result, many school-aged children have been exposed to the digital world a lot. Children are using more digital technologies, so schools need to teach kids more about cyber security and online safety. Because of this, there are now more school programmes and projects that teach students about cyber security and online safety and help them learn and improve their skills. Still, despite many programmes and projects, there is not much proof of how many schools have taken part and helped spread the word about them. This work shows how we can learn about the size and scope of cyber security and online safety education in schools in the UK, a country with a very active and advanced cyber security education profile, using nearly 200k public tweets from over 15k schools. By using simple techniques like descriptive statistics and visualisation as well as advanced natural language processing (NLP) techniques like sentiment analysis and topic modelling, we show some new findings and insights about how UK schools as a sector have been doing on Twitter with their cyber security and online safety education activities. Our work has led to a range of large-scale and real-world evidence that can help inform people and organisations interested in cyber security and teaching online safety in schools. 4 authors · Dec 28, 2022
- Classifying Norm Conflicts using Learned Semantic Representations While most social norms are informal, they are often formalized by companies in contracts to regulate trades of goods and services. When poorly written, contracts may contain normative conflicts resulting from opposing deontic meanings or contradict specifications. As contracts tend to be long and contain many norms, manually identifying such conflicts requires human-effort, which is time-consuming and error-prone. Automating such task benefits contract makers increasing productivity and making conflict identification more reliable. To address this problem, we introduce an approach to detect and classify norm conflicts in contracts by converting them into latent representations that preserve both syntactic and semantic information and training a model to classify norm conflicts in four conflict types. Our results reach the new state of the art when compared to a previous approach. 5 authors · May 13, 2019
- A Network Analysis Approach to Conlang Research Literature The field of conlang has evidenced an important growth in the last decades. This has been the product of a wide interest in the use and study of conlangs for artistic purposes. However, one important question is what it is happening with conlang in the academic world. This paper aims to have an overall understanding of the literature on conlang research. With this we aim to give a realistic picture of the field in present days. We have implemented a computational linguistic approach, combining bibliometrics and network analysis to examine all publications available in the Scopus database. Analysing over 2300 academic publications since 1927 until 2022, we have found that Esperanto is by far the most documented conlang. Three main authors have contributed to this: Garv\'ia R., Fiedler S., and Blanke D. The 1970s and 1980s have been the decades where the foundations of current research have been built. In terms of methodologies, language learning and experimental linguistics are the ones contributing to most to the preferred approaches of study in the field. We present the results and discuss our limitations and future work. 1 authors · Jul 22, 2024
2 Yo'LLaVA: Your Personalized Language and Vision Assistant Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA). 6 authors · Jun 13, 2024
- A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset. 4 authors · Feb 9
- Science and engineering for what? A large-scale analysis of students' projects in science fairs Science and Engineering fairs offer K-12 students opportunities to engage with authentic STEM practices. Particularly, students are given the chance to experience authentic and open inquiry processes, by defining which themes, questions and approaches will guide their scientific endeavors. In this study, we analyzed data from over 5,000 projects presented at a nationwide science fair in Brazil over the past 20 years using topic modeling to identify the main topics that have driven students' inquiry and design. Our analysis identified a broad range of topics being explored, with significant variations over time, region, and school setting. We argue those results and proposed methodology can not only support further research in the context of science fairs, but also inform instruction and design of contexts-specific resources to support students in open inquiry experiences in different settings. 4 authors · Aug 5, 2023
- Pretrained Language Models for Sequential Sentence Classification As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts. 5 authors · Sep 9, 2019
- The broader spectrum of in-context learning The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit x2014 such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization. 4 authors · Dec 4, 2024
- Propaganda to Hate: A Multimodal Analysis of Arabic Memes with Multi-Agent LLMs In the past decade, social media platforms have been used for information dissemination and consumption. While a major portion of the content is posted to promote citizen journalism and public awareness, some content is posted to mislead users. Among different content types such as text, images, and videos, memes (text overlaid on images) are particularly prevalent and can serve as powerful vehicles for propaganda, hate, and humor. In the current literature, there have been efforts to individually detect such content in memes. However, the study of their intersection is very limited. In this study, we explore the intersection between propaganda and hate in memes using a multi-agent LLM-based approach. We extend the propagandistic meme dataset with coarse and fine-grained hate labels. Our finding suggests that there is an association between propaganda and hate in memes. We provide detailed experimental results that can serve as a baseline for future studies. We will make the experimental resources publicly available to the community (https://github.com/firojalam/propaganda-and-hateful-memes). 5 authors · Sep 11, 2024
- EcoVerse: An Annotated Twitter Dataset for Eco-Relevance Classification, Environmental Impact Analysis, and Stance Detection Anthropogenic ecological crisis constitutes a significant challenge that all within the academy must urgently face, including the Natural Language Processing (NLP) community. While recent years have seen increasing work revolving around climate-centric discourse, crucial environmental and ecological topics outside of climate change remain largely unaddressed, despite their prominent importance. Mainstream NLP tasks, such as sentiment analysis, dominate the scene, but there remains an untouched space in the literature involving the analysis of environmental impacts of certain events and practices. To address this gap, this paper presents EcoVerse, an annotated English Twitter dataset of 3,023 tweets spanning a wide spectrum of environmental topics. We propose a three-level annotation scheme designed for Eco-Relevance Classification, Stance Detection, and introducing an original approach for Environmental Impact Analysis. We detail the data collection, filtering, and labeling process that led to the creation of the dataset. Remarkable Inter-Annotator Agreement indicates that the annotation scheme produces consistent annotations of high quality. Subsequent classification experiments using BERT-based models, including ClimateBERT, are presented. These yield encouraging results, while also indicating room for a model specifically tailored for environmental texts. The dataset is made freely available to stimulate further research. 4 authors · Apr 7, 2024
- Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models The popularity of social media has created problems such as hate speech and sexism. The identification and classification of sexism in social media are very relevant tasks, as they would allow building a healthier social environment. Nevertheless, these tasks are considerably challenging. This work proposes a system to use multilingual and monolingual BERT and data points translation and ensemble strategies for sexism identification and classification in English and Spanish. It was conducted in the context of the sEXism Identification in Social neTworks shared 2021 (EXIST 2021) task, proposed by the Iberian Languages Evaluation Forum (IberLEF). The proposed system and its main components are described, and an in-depth hyperparameters analysis is conducted. The main results observed were: (i) the system obtained better results than the baseline model (multilingual BERT); (ii) ensemble models obtained better results than monolingual models; and (iii) an ensemble model considering all individual models and the best standardized values obtained the best accuracies and F1-scores for both tasks. This work obtained first place in both tasks at EXIST, with the highest accuracies (0.780 for task 1 and 0.658 for task 2) and F1-scores (F1-binary of 0.780 for task 1 and F1-macro of 0.579 for task 2). 3 authors · Nov 8, 2021
- Navigating Human Language Models with Synthetic Agents Modern natural language models such as the GPT-2/GPT-3 contain tremendous amounts of information about human belief in a consistently testable form. If these models could be shown to accurately reflect the underlying beliefs of the human beings that produced the data used to train these models, then such models become a powerful sociological tool in ways that are distinct from traditional methods, such as interviews and surveys. In this study, We train a version of the GPT-2 on a corpora of historical chess games, and then "launch" clusters of synthetic agents into the model, using text strings to create context and orientation. We compare the trajectories contained in the text generated by the agents/model and compare that to the known ground truth of the chess board, move legality, and historical patterns of play. We find that the percentages of moves by piece using the model are substantially similar from human patterns. We further find that the model creates an accurate latent representation of the chessboard, and that it is possible to plot trajectories of legal moves across the board using this knowledge. 2 authors · Aug 10, 2020
- Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability. 7 authors · Feb 10
- The Pushshift Reddit Dataset Social media data has become crucial to the advancement of scientific understanding. However, even though it has become ubiquitous, just collecting large-scale social media data involves a high degree of engineering skill set and computational resources. In fact, research is often times gated by data engineering problems that must be overcome before analysis can proceed. This has resulted recognition of datasets as meaningful research contributions in and of themselves. Reddit, the so called "front page of the Internet," in particular has been the subject of numerous scientific studies. Although Reddit is relatively open to data acquisition compared to social media platforms like Facebook and Twitter, the technical barriers to acquisition still remain. Thus, Reddit's millions of subreddits, hundreds of millions of users, and hundreds of billions of comments are at the same time relatively accessible, but time consuming to collect and analyze systematically. In this paper, we present the Pushshift Reddit dataset. Pushshift is a social media data collection, analysis, and archiving platform that since 2015 has collected Reddit data and made it available to researchers. Pushshift's Reddit dataset is updated in real-time, and includes historical data back to Reddit's inception. In addition to monthly dumps, Pushshift provides computational tools to aid in searching, aggregating, and performing exploratory analysis on the entirety of the dataset. The Pushshift Reddit dataset makes it possible for social media researchers to reduce time spent in the data collection, cleaning, and storage phases of their projects. 5 authors · Jan 23, 2020
1 Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning Due to their similarity-based learning objectives, pretrained sentence encoders often internalize stereotypical assumptions that reflect the social biases that exist within their training corpora. In this paper, we describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models, including pretrained next sentence prediction and contrastive sentence representation models. We compare such models to textual entailment models that learn language logic for a variety of downstream language understanding tasks. By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias and improve the recognition of social communities, without an explicit de-biasing process 2 authors · Mar 9, 2023
- TUNIZI: a Tunisian Arabizi sentiment analysis Dataset On social media, Arabic people tend to express themselves in their own local dialects. More particularly, Tunisians use the informal way called "Tunisian Arabizi". Analytical studies seek to explore and recognize online opinions aiming to exploit them for planning and prediction purposes such as measuring the customer satisfaction and establishing sales and marketing strategies. However, analytical studies based on Deep Learning are data hungry. On the other hand, African languages and dialects are considered low resource languages. For instance, to the best of our knowledge, no annotated Tunisian Arabizi dataset exists. In this paper, we introduce TUNIZI a sentiment analysis Tunisian Arabizi Dataset, collected from social networks, preprocessed for analytical studies and annotated manually by Tunisian native speakers. 3 authors · Apr 29, 2020
- CAVES: A Dataset to facilitate Explainable Classification and Summarization of Concerns towards COVID Vaccines Convincing people to get vaccinated against COVID-19 is a key societal challenge in the present times. As a first step towards this goal, many prior works have relied on social media analysis to understand the specific concerns that people have towards these vaccines, such as potential side-effects, ineffectiveness, political factors, and so on. Though there are datasets that broadly classify social media posts into Anti-vax and Pro-Vax labels, there is no dataset (to our knowledge) that labels social media posts according to the specific anti-vaccine concerns mentioned in the posts. In this paper, we have curated CAVES, the first large-scale dataset containing about 10k COVID-19 anti-vaccine tweets labelled into various specific anti-vaccine concerns in a multi-label setting. This is also the first multi-label classification dataset that provides explanations for each of the labels. Additionally, the dataset also provides class-wise summaries of all the tweets. We also perform preliminary experiments on the dataset and show that this is a very challenging dataset for multi-label explainable classification and tweet summarization, as is evident by the moderate scores achieved by some state-of-the-art models. Our dataset and codes are available at: https://github.com/sohampoddar26/caves-data 5 authors · Apr 28, 2022
1 Domain-specific Continued Pretraining of Language Models for Capturing Long Context in Mental Health Pretrained language models have been used in various natural language processing applications. In the mental health domain, domain-specific language models are pretrained and released, which facilitates the early detection of mental health conditions. Social posts, e.g., on Reddit, are usually long documents. However, there are no domain-specific pretrained models for long-sequence modeling in the mental health domain. This paper conducts domain-specific continued pretraining to capture the long context for mental health. Specifically, we train and release MentalXLNet and MentalLongformer based on XLNet and Longformer. We evaluate the mental health classification performance and the long-range ability of these two domain-specific pretrained models. Our models are released in HuggingFace. 6 authors · Apr 20, 2023
- Detecting Fake News Using Machine Learning : A Systematic Literature Review Internet is one of the important inventions and a large number of persons are its users. These persons use this for different purposes. There are different social media platforms that are accessible to these users. Any user can make a post or spread the news through the online platforms. These platforms do not verify the users or their posts. So some of the users try to spread fake news through these platforms. These news can be propaganda against an individual, society, organization or political party. A human being is unable to detect all these fake news. So there is a need for machine learning classifiers that can detect these fake news automatically. Use of machine learning classifiers for detecting fake news is described in this systematic literature review. 4 authors · Feb 8, 2021
- Unsupervised Enrichment of Persona-grounded Dialog with Background Stories Humans often refer to personal narratives, life experiences, and events to make a conversation more engaging and rich. While persona-grounded dialog models are able to generate responses that follow a given persona, they often miss out on stating detailed experiences or events related to a persona, often leaving conversations shallow and dull. In this work, we equip dialog models with 'background stories' related to a persona by leveraging fictional narratives from existing story datasets (e.g. ROCStories). Since current dialog datasets do not contain such narratives as responses, we perform an unsupervised adaptation of a retrieved story for generating a dialog response using a gradient-based rewriting technique. Our proposed method encourages the generated response to be fluent (i.e., highly likely) with the dialog history, minimally different from the retrieved story to preserve event ordering and consistent with the original persona. We demonstrate that our method can generate responses that are more diverse, and are rated more engaging and human-like by human evaluators, compared to outputs from existing dialog models. 4 authors · Jun 15, 2021
- EmTract: Investor Emotions and Market Behavior We develop a tool that extracts emotions from social media text data. Our methodology has three main advantages. First, it is tailored for financial context; second, it incorporates key aspects of social media data, such as non-standard phrases, emojis and emoticons; and third, it operates by sequentially learning a latent representation that includes features such as word order, word usage, and local context. This tool, along with a user guide is available at: https://github.com/dvamossy/EmTract. Using EmTract, we explore the relationship between investor emotions expressed on social media and asset prices. We document a number of interesting insights. First, we confirm some of the findings of controlled laboratory experiments relating investor emotions to asset price movements. Second, we show that investor emotions are predictive of daily price movements. These impacts are larger when volatility or short interest are higher, and when institutional ownership or liquidity are lower. Third, increased investor enthusiasm prior to the IPO contributes to the large first-day return and long-run underperformance of IPO stocks. To corroborate our results, we provide a number of robustness checks, including using an alternative emotion model. Our findings reinforce the intuition that emotions and market dynamics are closely related, and highlight the importance of considering investor emotions when assessing a stock's short-term value. 2 authors · Dec 7, 2021
- From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages -- English, Arabic and Spanish -- we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets. 6 authors · Apr 27, 2024
- Room to Grow: Understanding Personal Characteristics Behind Self Improvement Using Social Media Many people aim for change, but not everyone succeeds. While there are a number of social psychology theories that propose motivation-related characteristics of those who persist with change, few computational studies have explored the motivational stage of personal change. In this paper, we investigate a new dataset consisting of the writings of people who manifest intention to change, some of whom persist while others do not. Using a variety of linguistic analysis techniques, we first examine the writing patterns that distinguish the two groups of people. Persistent people tend to reference more topics related to long-term self-improvement and use a more complicated writing style. Drawing on these consistent differences, we build a classifier that can reliably identify the people more likely to persist, based on their language. Our experiments provide new insights into the motivation-related behavior of people who persist with their intention to change. 5 authors · May 17, 2021