prithivMLmods commited on
Commit
a955d84
·
verified ·
1 Parent(s): 32a36a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -25
README.md CHANGED
@@ -17,7 +17,7 @@ tags:
17
 
18
  # **Blitzar-Coder-4B-F.1**
19
 
20
- > **Blitzar-Coder-4B-F.1** is a high-efficiency, multi-language code reasoning model fine-tuned on **Qwen3-4B** using an enhanced **Mixture of Thoughts (MoT)** dataset, further enriched with **extended code reasoning traces across 10+ programming languages** including Python, Java, C++, C#, Go, and more. Designed to deliver expert-level code understanding, generation, and structured logic across diverse software engineering domains.
21
 
22
  > \[!note]
23
  > GGUF: [https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF](https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF)
@@ -26,23 +26,23 @@ tags:
26
 
27
  ## **Key Features**
28
 
29
- 1. **Expert-Level Multi-Language Code Reasoning**
30
- Trained on rich **code traces and reasoning samples** across **Python, Java, C++, C#, C, Go**, and other major languages—covering syntax, logic, and real-world implementations.
31
 
32
- 2. **Deep Code Understanding & Debugging**
33
- Supports full-stack prototyping, algorithm walkthroughs, optimization suggestions, and in-depth error analysis—ideal for developers, reviewers, and automated coding assistants.
34
 
35
- 3. **Symbolic and Scientific Reasoning Integration**
36
- Maintains strong performance in math, science, and logic-driven domains with support for **symbolic derivations**, **equation solving**, and **structured explanations**.
37
 
38
- 4. **Structured Format Output Mastery**
39
- Outputs fluently in **Markdown**, **JSON**, **LaTeX**, **YAML**, and **CSV** formats—making it highly suitable for technical documentation, configuration files, and code-comment generation.
40
 
41
- 5. **Optimized 4B Parameter Footprint**
42
- Balances accuracy and efficiency, allowing deployment on **mid-tier GPUs**, **on-premise clusters**, and **AI edge deployments** without sacrificing capability.
43
 
44
- 6. **STEM-Compatible Chain-of-Thought Reasoning**
45
- Built to decompose complex problems across science, technology, and engineering fields using chain-of-thought and symbolic logic reasoning patterns.
46
 
47
  ---
48
 
@@ -51,7 +51,7 @@ tags:
51
  ```python
52
  from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
- model_name = "prithivMLmods/Lacaille-MoT-4B-Supreme2" # Update if renamed on HF
55
 
56
  model = AutoModelForCausalLM.from_pretrained(
57
  model_name,
@@ -60,10 +60,10 @@ model = AutoModelForCausalLM.from_pretrained(
60
  )
61
  tokenizer = AutoTokenizer.from_pretrained(model_name)
62
 
63
- prompt = "Write a Python function to check if a string is a palindrome. Explain the logic."
64
 
65
  messages = [
66
- {"role": "system", "content": "You are a multilingual code assistant skilled in logic and structured reasoning."},
67
  {"role": "user", "content": prompt}
68
  ]
69
 
@@ -91,20 +91,21 @@ print(response)
91
 
92
  ## **Intended Use**
93
 
94
- * Multilingual code generation, optimization, and explanation across 10+ languages
95
- * Scientific logic integration with code for computational tasks
96
- * Teaching assistant for programming, algorithm design, and software architecture
97
- * Structured technical documentation generation
98
- * Edge-friendly inference for developer tools and code copilots
 
99
 
100
  ---
101
 
102
  ## **Limitations**
103
 
104
- * Not designed for general conversation or storytelling
105
- * May underperform on emotional, opinion-based, or casual queries
106
- * Lacks ultra-long context capabilities (multi-file reasoning is limited)
107
- * Specializes in technical precision over natural dialogue flow
108
 
109
  ---
110
 
 
17
 
18
  # **Blitzar-Coder-4B-F.1**
19
 
20
+ > **Blitzar-Coder-4B-F.1** is a high-efficiency, multi-language coding model fine-tuned on **Qwen3-4B** using **larger coding traces datasets** spanning **10+ programming languages** including Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, and more. This model delivers exceptional code generation, debugging, and reasoning capabilities—making it an ideal tool for developers seeking advanced programming assistance under constrained compute.
21
 
22
  > \[!note]
23
  > GGUF: [https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF](https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF)
 
26
 
27
  ## **Key Features**
28
 
29
+ 1. **Multi-Language Code Mastery**
30
+ Fine-tuned on **extensive coding traces datasets** covering **10+ programming languages** (Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, Swift, Kotlin, and more), enabling cross-language development and translation.
31
 
32
+ 2. **Advanced Code Generation & Reasoning**
33
+ Supports complex algorithm synthesis, code optimization, debugging workflows, and architectural design patterns across multiple paradigms—from systems programming to web development.
34
 
35
+ 3. **Cross-Language Development Support**
36
+ Seamlessly handles polyglot codebases, API integrations, and framework-specific implementations while maintaining language-specific best practices and idioms.
37
 
38
+ 4. **Intelligent Code Analysis**
39
+ Performs code reviews, identifies performance bottlenecks, suggests refactoring opportunities, and provides detailed explanations for complex programming concepts.
40
 
41
+ 5. **Structured Output for Development**
42
+ Generates clean code documentation, API specifications, configuration files, and technical documentation in various formats including **Markdown**, **JSON**, **YAML**, and inline comments.
43
 
44
+ 6. **Optimized 4B Footprint for Developer Workflows**
45
+ Balanced for performance and efficiency, deployable on **developer workstations**, **CI/CD pipelines**, and **edge development environments** without compromising code quality.
46
 
47
  ---
48
 
 
51
  ```python
52
  from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
+ model_name = "prithivMLmods/Blitzar-Coder-4B-F.1"
55
 
56
  model = AutoModelForCausalLM.from_pretrained(
57
  model_name,
 
60
  )
61
  tokenizer = AutoTokenizer.from_pretrained(model_name)
62
 
63
+ prompt = "Create a REST API endpoint in Python using FastAPI that handles file uploads with validation and returns processing status."
64
 
65
  messages = [
66
+ {"role": "system", "content": "You are an expert programming assistant skilled in multiple languages and development practices."},
67
  {"role": "user", "content": prompt}
68
  ]
69
 
 
91
 
92
  ## **Intended Use**
93
 
94
+ * Multi-language code generation and debugging assistance
95
+ * Cross-platform development and code translation between languages
96
+ * Code review, optimization, and refactoring suggestions
97
+ * Technical documentation and API specification generation
98
+ * Developer productivity tools and IDE integrations
99
+ * Educational coding tutorials and programming concept explanations
100
 
101
  ---
102
 
103
  ## **Limitations**
104
 
105
+ * Optimized for coding tasks—may underperform on general conversation
106
+ * Context limitations may affect analysis of very large codebases
107
+ * Focused on programming domains—creative writing capabilities are limited
108
+ * Best suited for technical development workflows rather than casual chat
109
 
110
  ---
111