prithivMLmods commited on
Commit
bb6a158
·
verified ·
1 Parent(s): dfaad6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -1
README.md CHANGED
@@ -17,6 +17,10 @@ tags:
17
 
18
  ![ChatGPT Image Apr 24, 2025, 09_44_31 AM.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/l-C5O9g4CNLdVyWnRn-UG.png)
19
 
 
 
 
 
20
  ```py
21
  Classification Report:
22
  precision recall f1-score support
@@ -29,4 +33,77 @@ Classification Report:
29
  weighted avg 0.9989 0.9989 0.9989 10000
30
  ```
31
 
32
- ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/1ylOG64XFJgD1uvlTaehx.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ![ChatGPT Image Apr 24, 2025, 09_44_31 AM.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/l-C5O9g4CNLdVyWnRn-UG.png)
19
 
20
+ # **BnW-vs-Colored-Detection**
21
+
22
+ > **BnW-vs-Colored-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to distinguish between black & white and colored images using the **SiglipForImageClassification** architecture.
23
+
24
  ```py
25
  Classification Report:
26
  precision recall f1-score support
 
33
  weighted avg 0.9989 0.9989 0.9989 10000
34
  ```
35
 
36
+ ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/1ylOG64XFJgD1uvlTaehx.png)
37
+
38
+ ---
39
+
40
+ The model categorizes images into 2 classes:
41
+
42
+ ```
43
+ Class 0: "B & W"
44
+ Class 1: "Colored"
45
+ ```
46
+
47
+ ---
48
+
49
+ ## **Install dependencies**
50
+
51
+ ```python
52
+ !pip install -q transformers torch pillow gradio
53
+ ```
54
+
55
+ ---
56
+
57
+ ## **Inference Code**
58
+
59
+ ```python
60
+ import gradio as gr
61
+ from transformers import AutoImageProcessor, SiglipForImageClassification
62
+ from PIL import Image
63
+ import torch
64
+
65
+ # Load model and processor
66
+ model_name = "prithivMLmods/BnW-vs-Colored-Detection" # Updated model name
67
+ model = SiglipForImageClassification.from_pretrained(model_name)
68
+ processor = AutoImageProcessor.from_pretrained(model_name)
69
+
70
+ def classify_bw_colored(image):
71
+ """Predicts if an image is Black & White or Colored."""
72
+ image = Image.fromarray(image).convert("RGB")
73
+ inputs = processor(images=image, return_tensors="pt")
74
+
75
+ with torch.no_grad():
76
+ outputs = model(**inputs)
77
+ logits = outputs.logits
78
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
79
+
80
+ labels = {
81
+ "0": "B & W", "1": "Colored"
82
+ }
83
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
84
+
85
+ return predictions
86
+
87
+ # Create Gradio interface
88
+ iface = gr.Interface(
89
+ fn=classify_bw_colored,
90
+ inputs=gr.Image(type="numpy"),
91
+ outputs=gr.Label(label="Prediction Scores"),
92
+ title="BnW vs Colored Detection",
93
+ description="Upload an image to detect if it is Black & White or Colored."
94
+ )
95
+
96
+ if __name__ == "__main__":
97
+ iface.launch()
98
+ ```
99
+
100
+ ---
101
+
102
+ ## **Intended Use:**
103
+
104
+ The **BnW-vs-Colored-Detection** model is designed to classify images by color mode. Potential use cases include:
105
+
106
+ - **Archive Organization:** Separate historical B&W images from modern colored ones.
107
+ - **Data Filtering:** Preprocess image datasets by removing or labeling specific types.
108
+ - **Digital Restoration:** Assist in determining candidates for colorization.
109
+ - **Search & Categorization:** Enable efficient tagging and filtering in image libraries.