--- license: apache-2.0 datasets: - AadityaJain/Fromula_text_classification language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Formula-Text-Detection - SigLIP2 - Image-Classification --- ![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/lg90wKzVcHjnTXs8_EGCR.png) # **Formula-Text-Detection** > **Formula-Text-Detection** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is built using the **SiglipForImageClassification** architecture to distinguish between **mathematical formulas** and **natural text** in document or image regions. > [!Note] > Note: This model works best with plain text or formulas using the same font style ```py Classification Report: precision recall f1-score support formula 0.9983 1.0000 0.9991 6375 text 1.0000 0.9980 0.9990 5457 accuracy 0.9991 11832 macro avg 0.9991 0.9990 0.9991 11832 weighted avg 0.9991 0.9991 0.9991 11832 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/OdNUMSb_utc_RBWd3Gjfq.png) --- > [!note] *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 --- ## **Label Space: 2 Classes** The model classifies each input image into one of the following categories: ``` Class 0: "formula" Class 1: "text" ``` --- ## **Install Dependencies** ```bash pip install -q transformers torch pillow gradio ``` --- ## **Inference Code** ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Formula-Text-Detection" # Replace with your model path if different model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "formula", "1": "text" } def classify_formula_or_text(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_formula_or_text, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Formula or Text"), title="Formula-Text-Detection", description="Upload an image region to classify whether it contains a mathematical formula or natural text." ) if __name__ == "__main__": iface.launch() ``` ## **Demo Inference** > [!Important] > Text ![Screenshot 2025-04-30 at 04-57-23 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KulSEk6AEV-QgMX4rFimq.png) ![Screenshot 2025-04-30 at 04-57-50 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3y1nWn2moOgga939LlhzB.png) ![Screenshot 2025-04-30 at 04-58-16 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xvliPSGTHtA_bkEl5utIM.png) > [!Important] > Formula ![Screenshot 2025-04-30 at 04-58-51 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4TbEz_vLKochuTuNiq7cH.png) ![Screenshot 2025-04-30 at 04-59-28 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fS_EoLZ7pnfWoWB5pVooL.png) ![Screenshot 2025-04-30 at 05-01-42 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/utc88h1KQLLXKB-qllT4v.png) --- ## **Intended Use** **Formula-Text-Detection** can be used in: - **OCR Preprocessing** – Improve document OCR accuracy by separating formulas from text. - **Scientific Document Analysis** – Automatically detect mathematical content. - **Educational Platforms** – Classify and annotate scanned materials. - **Layout Understanding** – Help AI systems interpret mixed-content documents.