Upload folder using huggingface_hub
Browse files- README.md +0 -193
- config.json +1 -2
- generation_config.json +1 -1
- tokenizer_config.json +2 -2
README.md
CHANGED
@@ -1,193 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
|
4 |
-
pipeline_tag: text-generation
|
5 |
-
base_model: rednote-hilab/dots.llm1.base
|
6 |
-
tags:
|
7 |
-
- chat
|
8 |
-
library_name: transformers
|
9 |
-
language:
|
10 |
-
- en
|
11 |
-
- zh
|
12 |
-
---
|
13 |
-
|
14 |
-
# dots1
|
15 |
-
|
16 |
-
<p align="center">
|
17 |
-
<img src="figures/new_logo.png" width="200"/>
|
18 |
-
<p>
|
19 |
-
|
20 |
-
<p align="center">
|
21 |
-
  🤗 <a href="https://huggingface.co/rednote-hilab">Hugging Face</a>   |    📑 <a href="https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf">Paper</a>   
|
22 |
-
<br>
|
23 |
-
🖥️ <a href="https://huggingface.co/spaces/rednote-hilab/dots-demo">Demo</a>   |   💬 <a href="figures/wechat.png">WeChat (微信)</a>   |   📕 <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c">rednote</a>  
|
24 |
-
</p>
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
Visit our Hugging Face (click links above), search checkpoints with names starting with `dots.llm1` or visit the [dots1 collection](https://huggingface.co/collections/rednote-hilab/dotsllm1-68246aaaaba3363374a8aa7c), and you will find all you need! Enjoy!
|
30 |
-
|
31 |
-
|
32 |
-
## News
|
33 |
-
|
34 |
-
- 2025.06.06: We released the `dots.llm1` series. Check our [report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf) for more details!
|
35 |
-
|
36 |
-
|
37 |
-
## 1. Introduction
|
38 |
-
|
39 |
-
|
40 |
-
The `dots.llm1` model is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models.
|
41 |
-
Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B after pretrained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
|
42 |
-
|
43 |
-
|
44 |
-
<p align="center">
|
45 |
-
<img width="90%" src="./figures/performance.png">
|
46 |
-
</p>
|
47 |
-
|
48 |
-
## 2. Model Summary
|
49 |
-
|
50 |
-
**This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
|
51 |
-
|
52 |
-
- Type: A MoE model with 14B activated and 142B total parameters trained on 11.2T tokens.
|
53 |
-
- Training Stages: Pretraining and SFT.
|
54 |
-
- Architecture: Multi-head Attention with QK-Norm in attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
|
55 |
-
- Number of Layers: 62
|
56 |
-
- Number of Attention Heads: 32
|
57 |
-
- Supported Languages: English, Chinese
|
58 |
-
- Context Length: 32,768 tokens
|
59 |
-
- License: MIT
|
60 |
-
|
61 |
-
The highlights from `dots.llm1` include:
|
62 |
-
|
63 |
-
- **Enhanced Data Processing**: We propose a scalable and fine-grained *three-stage* data processing framework designed to generate large-scale, high-quality and diverse data for pretraining.
|
64 |
-
- **No Synthetic Data during Pretraining**: *11.2 trillion* high-quality non-synthetic tokens was used in base model pretraining.
|
65 |
-
- **Performance and Cost Efficiency**: `dots.llm1` is an open-source model that activates only *14B* parameters at inference, delivering both comprehensive capabilities and high computational efficiency.
|
66 |
-
- **Infrastructure**: We introduce an innovative MoE all-to-all communication and computation overlapping recipe based on interleaved 1F1B pipeline scheduling and an efficient grouped GEMM implementation to boost computational efficiency.
|
67 |
-
- **Open Accessibility to Model Dynamics**: Intermediate model checkpoints for *every 1T tokens* trained are released, facilitating future research into the learning dynamics of large language models.
|
68 |
-
|
69 |
-
## 3. Example Usage
|
70 |
-
|
71 |
-
### Model Downloads
|
72 |
-
|
73 |
-
<div align="center">
|
74 |
-
|
75 |
-
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** |
|
76 |
-
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
77 |
-
| dots.llm1.base | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.base) |
|
78 |
-
| dots.llm1.inst | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.inst) |
|
79 |
-
|
80 |
-
</div>
|
81 |
-
|
82 |
-
### Docker (recommended)
|
83 |
-
|
84 |
-
|
85 |
-
The docker images are available on [Docker Hub](https://hub.docker.com/repository/docker/rednotehilab/dots1/tags), based on the official images.
|
86 |
-
|
87 |
-
You can start a server via vllm.
|
88 |
-
|
89 |
-
```shell
|
90 |
-
docker run --gpus all \
|
91 |
-
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
92 |
-
-p 8000:8000 \
|
93 |
-
--ipc=host \
|
94 |
-
rednotehilab/dots1:vllm-openai-v0.9.0.1 \
|
95 |
-
--model rednote-hilab/dots.llm1.inst \
|
96 |
-
--tensor-parallel-size 8 \
|
97 |
-
--trust-remote-code \
|
98 |
-
--served-model-name dots1
|
99 |
-
```
|
100 |
-
|
101 |
-
Then you can verify whether the model is running successfully in the following way.
|
102 |
-
|
103 |
-
```shell
|
104 |
-
curl http://localhost:8000/v1/chat/completions \
|
105 |
-
-H "Content-Type: application/json" \
|
106 |
-
-d '{
|
107 |
-
"model": "dots1",
|
108 |
-
"messages": [
|
109 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
110 |
-
{"role": "user", "content": "Who won the world series in 2020?"}
|
111 |
-
],
|
112 |
-
"max_tokens": 32,
|
113 |
-
"temperature": 0
|
114 |
-
}'
|
115 |
-
```
|
116 |
-
|
117 |
-
|
118 |
-
### Inference with huggingface
|
119 |
-
|
120 |
-
#### Text Completion
|
121 |
-
|
122 |
-
```python
|
123 |
-
import torch
|
124 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
125 |
-
|
126 |
-
model_name = "rednote-hilab/dots.llm1.base"
|
127 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
128 |
-
|
129 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
130 |
-
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
131 |
-
|
132 |
-
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
133 |
-
inputs = tokenizer(text, return_tensors="pt")
|
134 |
-
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
135 |
-
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
-
print(result)
|
137 |
-
```
|
138 |
-
|
139 |
-
#### Chat Completion
|
140 |
-
|
141 |
-
```python
|
142 |
-
import torch
|
143 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
144 |
-
|
145 |
-
model_name = "rednote-hilab/dots.llm1.inst"
|
146 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
147 |
-
|
148 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
149 |
-
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
150 |
-
|
151 |
-
messages = [
|
152 |
-
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
153 |
-
]
|
154 |
-
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
155 |
-
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)
|
156 |
-
|
157 |
-
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
158 |
-
print(result)
|
159 |
-
```
|
160 |
-
|
161 |
-
|
162 |
-
### Inference with sglang
|
163 |
-
[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. `sglang>=***` is required. It is as easy as
|
164 |
-
|
165 |
-
```shell
|
166 |
-
python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000
|
167 |
-
```
|
168 |
-
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
169 |
-
|
170 |
-
### Inference with vllm
|
171 |
-
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended.
|
172 |
-
|
173 |
-
```shell
|
174 |
-
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
|
175 |
-
```
|
176 |
-
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
177 |
-
|
178 |
-
## 4. Evaluation Results
|
179 |
-
|
180 |
-
Detailed evaluation results are reported in this [📑 report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf).
|
181 |
-
|
182 |
-
## Citation
|
183 |
-
|
184 |
-
If you find `dots.llm1` is useful or want to use in your projects, please kindly cite our paper:
|
185 |
-
|
186 |
-
```
|
187 |
-
@article{dots1,
|
188 |
-
title={dots.llm1 Technical Report},
|
189 |
-
author={rednote-hilab},
|
190 |
-
journal={arXiv preprint arXiv:TBD},
|
191 |
-
year={2025}
|
192 |
-
}
|
193 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
7 |
"bos_token_id": null,
|
8 |
-
"eos_token_id":
|
9 |
"first_k_dense_replace": 1,
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 4096,
|
@@ -14,7 +14,6 @@
|
|
14 |
"max_position_embeddings": 32768,
|
15 |
"model_type": "dots1",
|
16 |
"moe_intermediate_size": 1408,
|
17 |
-
"moe_layer_freq": 1,
|
18 |
"n_routed_experts": 128,
|
19 |
"n_shared_experts": 2,
|
20 |
"norm_topk_prob": true,
|
|
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
7 |
"bos_token_id": null,
|
8 |
+
"eos_token_id": 151645,
|
9 |
"first_k_dense_replace": 1,
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 4096,
|
|
|
14 |
"max_position_embeddings": 32768,
|
15 |
"model_type": "dots1",
|
16 |
"moe_intermediate_size": 1408,
|
|
|
17 |
"n_routed_experts": 128,
|
18 |
"n_shared_experts": 2,
|
19 |
"norm_topk_prob": true,
|
generation_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": null,
|
4 |
-
"eos_token_id":
|
5 |
"transformers_version": "4.46.3"
|
6 |
}
|
|
|
1 |
{
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": null,
|
4 |
+
"eos_token_id": 151645,
|
5 |
"transformers_version": "4.46.3"
|
6 |
}
|
tokenizer_config.json
CHANGED
@@ -134,10 +134,10 @@
|
|
134 |
"bos_token": null,
|
135 |
"chat_template": "{% if messages[0]['role'] == 'system' %}<|system|>{{ messages[0]['content'] }}<|endofsystem|>{% set start_idx = 1 %}{% else %}<|system|><|endofsystem|>{% set start_idx = 0 %}{% endif %}{% for idx in range(start_idx, messages|length) %}{% if messages[idx]['role'] == 'user' %}<|userprompt|>{{ messages[idx]['content'] }}<|endofuserprompt|>{% elif messages[idx]['role'] == 'assistant' %}<|response|>{{ messages[idx]['content'] }}<|endofresponse|>{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] == 'user' %}<|response|>{% endif %}",
|
136 |
"clean_up_tokenization_spaces": false,
|
137 |
-
"eos_token": "<|
|
138 |
"errors": "replace",
|
139 |
"model_max_length": 32768,
|
140 |
-
"pad_token": "<|
|
141 |
"split_special_tokens": false,
|
142 |
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
"unk_token": null
|
|
|
134 |
"bos_token": null,
|
135 |
"chat_template": "{% if messages[0]['role'] == 'system' %}<|system|>{{ messages[0]['content'] }}<|endofsystem|>{% set start_idx = 1 %}{% else %}<|system|><|endofsystem|>{% set start_idx = 0 %}{% endif %}{% for idx in range(start_idx, messages|length) %}{% if messages[idx]['role'] == 'user' %}<|userprompt|>{{ messages[idx]['content'] }}<|endofuserprompt|>{% elif messages[idx]['role'] == 'assistant' %}<|response|>{{ messages[idx]['content'] }}<|endofresponse|>{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] == 'user' %}<|response|>{% endif %}",
|
136 |
"clean_up_tokenization_spaces": false,
|
137 |
+
"eos_token": "<|endofresponse|>",
|
138 |
"errors": "replace",
|
139 |
"model_max_length": 32768,
|
140 |
+
"pad_token": "<|endofresponse|>",
|
141 |
"split_special_tokens": false,
|
142 |
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
"unk_token": null
|