File size: 4,919 Bytes
3d06b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import re
from typing import cast, Any
from datasets import load_dataset, Dataset as HfDataset
from unfat.extract import Extractor
from unfat.client import OpenAiCompatClient
from unfat.datasets import Dataset, Prompts, hub_prompts, HubSplit
from unfat.together import llama_3_1_70b_together
from unfat.lora import LoraSettings

def gen_prompts(
    ds_name: str,
    text_field: str,
    start_regex: re.Pattern | None = None,
    end_regex: re.Pattern | None = None,
):
    ds = cast(HfDataset, load_dataset(ds_name, split="train"))
    def items():
        for row in ds:
            casted = cast(dict[Any, Any], row)
            text = casted[text_field]
            if start_regex and end_regex:
                yield end_regex.sub("", start_regex.sub("", text))
            elif start_regex:
                yield start_regex.sub("", text)
            elif end_regex:
                yield end_regex.sub("", text)
            else:
                yield text

    return Prompts(
        output_path=f"hub/{ds_name}.jsonl",
        count=lambda: len(ds),
        items=items,
    )

def extract_prompts_from_convos(
    ds_name: str,
    messages_field: str,
    role_field: str,
    content_field: str,
    user_role: str,
):
    ds = cast(HfDataset, load_dataset(ds_name, split="train"))
    def items():
        for row in ds:
            casted = cast(dict[Any, Any], row)
            for message in casted[messages_field]:
                if message[role_field] == user_role:
                    yield message[content_field]
                    break
    return Prompts(
        output_path=f"hub/{ds_name}.jsonl",
        count=lambda: len(ds),
        items=items,
    )

def main():
    output_dir = "output"
    rp_english = extract_prompts_from_convos(
        ds_name="OdiaGenAI/roleplay_english",
        messages_field="conversations",
        role_field="from",
        content_field="value",
        user_role="user",
    )
    bluemoon = extract_prompts_from_convos(
        ds_name="xDAN2099/RolePlay-Mixed-Bluemoon-Limarp",
        messages_field="conversations",
        role_field="from",
        content_field="value",
        user_role="human",
    )
    roleplay_prompts = gen_prompts(
        ds_name="AlekseyKorshuk/roleplay-io",
        text_field="input_text",
        start_regex=re.compile(r'^User: '),
        end_regex=re.compile(r'Bot:\s*$'),
    )
    roleplay_instr_prompts = gen_prompts(
        ds_name="iamketan25/roleplay-instructions-dataset",
        text_field="prompt",
        start_regex=re.compile(r'^Human: '),
        end_regex=re.compile(r'Assistant:\s*$'),
    )

    extractor = Extractor(
        max_concurrent=50,
        output_dir=output_dir,
        client=OpenAiCompatClient(
            base_url="https://glhf.chat/api/openai/v1",
            api_key=os.environ["GLHF_API_KEY"],
            model="hf:TheDrummer/Behemoth-123B-v1.2",
            retries=20,
        ),
        dataset=Dataset(
            train=[
                hub_prompts(
                    name="mlabonne/harmful_behaviors",
                    text_field="text",
                    split="train",
                ),
                roleplay_instr_prompts,
                roleplay_prompts,
                rp_english,
                bluemoon,
                hub_prompts(
                    name="TheDrummer/AmoralQA-v2",
                    text_field="prompt",
                    split="train",
                ),
                hub_prompts(
                    name="vicgalle/OpenHermesPreferences-roleplay",
                    text_field="prompt",
                    split="train",
                ),
                hub_prompts(
                    name="mrcuddle/DPO_Pairs_Roleplay-Alpaca",
                    text_field="prompt",
                    split="train",
                ),
                hub_prompts(
                    name="ResplendentAI/theory_of_mind_fixed_output",
                    text_field="instruction",
                    split="train",
                ),
                hub_prompts(
                    name="mlabonne/harmless_alpaca",
                    text_field="text",
                    split=HubSplit(name="train", max_rows=1000),
                ),
            ],
        ),
    )
    extractor.run()
    dataset = extractor.output_dataset()
    together_config = llama_3_1_70b_together(
        output_dir=output_dir,
        dataset=dataset,
        api_key=os.environ["TOGETHER_API_KEY"],
        settings=LoraSettings(
            rank=32,
            alpha=16,
            dropout=0.01,
            num_epochs=2,
            learning_rate=4e-4,
            evals_per_epoch=0,
            wandb_project="behemoth-distill",
            wandb_api_key=os.environ["WANDB_API_KEY"],
        )
    )
    files = together_config.upload_files()
    together_config.finetune(files)


if __name__ == "__main__":
    main()