sabber commited on
Commit
61c93f3
·
verified ·
1 Parent(s): 2b4817c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,969 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:17198
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ widget:
15
+ - source_sentence: How should we proceed if the installed valve or its appurtenances
16
+ do not conform to the City's criteria, and what steps are involved in remedying
17
+ the situation?
18
+ sentences:
19
+ - '1.1 SUMMARY:
20
+
21
+ 2. The valve shall perform as intended with no deformation, leaking or damage
22
+ of any kind for the pressure ranges indicated.
23
+
24
+ 3. Before acceptance of the installed valve, provide the City the opportunity
25
+ to inspect and operate the valve.
26
+
27
+ a. The City will assess the ease of operating the ball valves and corporation
28
+ stops, where applicable.
29
+
30
+ 4. The Combination Air Valve assembly shall be free from any leaks.
31
+
32
+ B. Non-Conforming Work
33
+
34
+ 1. Ifaccess and operation of the valve or its appurtenances does not meet the
35
+ City''s criteria, the Contractor will remedy the situation until it meets the
36
+ City''s criteria, at the Contractor''s expense.
37
+
38
+ 3.8. SYSTEM STARTUP [NOT USED]
39
+
40
+ 3.9 ADJUSTING [NOT USED]
41
+
42
+ 3.10 CLEANING [NOT USED]
43
+
44
+ 3.11 CLOSEOUT ACTIVITIES [NOT USED]
45
+
46
+ 3.12, PROTECTION [NOT USED]
47
+
48
+ 3.13 MAINTENANCE [NOT USED]
49
+
50
+ 3.14 ATTACHMENTS [NOT USED]'
51
+ - 'b. Miscellaneous Areas:
52
+
53
+ layer.. , 1 = . , 2 = 3). , 3 = Take corrective action if an adequate bond does
54
+ not exist between the. , 1 = . , 2 = . , 3 = current and underlying layer to ensure
55
+ an adequate bond will be achieved. , 1 = . , 2 = . , 3 = during subsequent placement
56
+ operations.. , 1 = . , 2 = 4). , 3 = The untrimmed core height must be in accordance
57
+ with the requirements in. , 1 = . , 2 = . , 3 = Table 17.. , 1 = . , 2 = 5). ,
58
+ 3 = If the cores are an acceptable height, trim the cores immediately after. ,
59
+ 1 = . , 2 = . , 3 = obtaining the cores in accordance with Tex-207-F.. , 1 = .
60
+ , 2 = . , 3 = Any core that does not meet the requirements in Table 17 will be
61
+ rejected.. , 1 = . , 2 = 6). , 3 = more. , 1 = . , 2 = . , 3 = The City may request
62
+ additional cores to be taken within the area. If. , 1 = . , 2 = 7). , 3 = than
63
+ 2 cores are'
64
+ - '4. Other Activities:
65
+
66
+ a. Rental of storage units, rental of storage space for recreational vehicles
67
+ (RV) and boats, and the sale of moving related items are allowed uses.
68
+
69
+ b. No other land use or business activity within storage units is allowed.
70
+
71
+ c. The rental of moving trucks and moving related equipment shall constitute an
72
+ Equipment Sales and Rental use.
73
+
74
+ d. The sale and leasing of recreational vehicles (RVs) and boats shall constitute
75
+ an Automotive Sales and Leasing use.'
76
+ - source_sentence: How do the setback regulations in the R1 District affect the design
77
+ and placement of structures on the lot?
78
+ sentences:
79
+ - 'B. R11 District Dimensional Standards:
80
+
81
+ Table 3.2-B: R1 District Dimensional Standards, 1 = Table 3.2-B: R1 District Dimensional
82
+ Standards. Table 3.2-B: R1 District Dimensional Standards, 2 = Table 3.2-B: R1
83
+ District Dimensional Standards. Table 3.2-B: R1 District Dimensional Standards,
84
+ 3 = Table 3.2-B: R1 District Dimensional Standards. Dimensional Standards, 1 =
85
+ Dimensional Standards. Dimensional Standards, 2 = Dimensional Standards. Dimensional
86
+ Standards, 3 = Additional Standards. LOT DIMENSIONS (MINIMUM), 1 = LOT DIMENSIONS
87
+ (MINIMUM). LOT DIMENSIONS (MINIMUM), 2 = LOT DIMENSIONS (MINIMUM). LOT DIMENSIONS
88
+ (MINIMUM), 3 = LOT DIMENSIONS (MINIMUM). oN, 1 = Lot area. oN, 2 = 32,000 sq ft.
89
+ oN, 3 = 3.7.2: Lot and Site Requirements. iam, 1 = Lot width. iam, 2 = 80 feet.
90
+ iam, 3 = 3.7.2: Lot and Site Requirements. fem, 1 = Lot depth 100. fem, 2 = feet.
91
+ fem, 3 = 3.7.2: Lot and Site Requirements. SETBACKS'
92
+ - '1. R7 Zoning District:
93
+
94
+ Self-service laundry facilities shall only be permitted as an accessory use to
95
+ multifamily dwellings, and such use shall be located within a multifamily structure.'
96
+ - '1.3 > REFERENCES:
97
+
98
+ NY, 1 = A.. NY, 2 = Abbreviations and Acronyms 1. AWG: American wire gauge 2..
99
+ Fw, 1 = . Fw, 2 = PVC: polyvinyl chloride. UN, 1 = Reference Standards. UN, 2
100
+ = Reference Standards. COAINID, 1 = 1.. COAINID, 2 = Reference standards cited
101
+ in this Section refer to the current reference standard published at the time
102
+ of the latest revision date logged at the end of this Section unless a date is
103
+ cited.. , 1 = 2.. , 2 = specifically Texas Department of Transportation, Standard
104
+ Specifications for Construction and Maintenance of Highways, Streets and Bridges
105
+ (TxDOT):. , 1 = a.. , 2 = Item 684, Traffic Signal Cables. 3. TxDOT Departmental
106
+ Materials Specification:. , 1 = 4.. , 2 = Underwriters Laboratories, Inc.. , 1
107
+ = . , 2 = (UL).. , 1 = 5.. , 2 = International Municipal Signal Association (IMSA)..
108
+ , 1 = ADMINISTRATIVE REQUIREMENTS [NOT USED]. , 2 = ADMINISTRATIVE REQUIREMENTS
109
+ [NOT USED]. , 1 = SUBMITTALS. , 2 = SUBMITTALS.'
110
+ - source_sentence: How do the Dimensional Standards apply to our development project
111
+ in the specified zoning districts?
112
+ sentences:
113
+ - 'v = Entire Site = Development Impact Area Only:
114
+
115
+ . . Dimensional Standards, DDC Reference = Subchapter 3: Zoning Districts. . .
116
+ Dimensional Standards, New A Construction = Vv. . . Dimensional Standards, Minor:
117
+ Tier 1 = 0). . . Dimensional Standards, Major: Tier 2 = v. Land-Disturbing Activities,
118
+ DDC Reference = 7.2. Land-Disturbing Activities, New A Construction = All development,
119
+ see Section 7.2. Land-Disturbing Activities, Minor: Tier 1 = All development,
120
+ see Section 7.2. Land-Disturbing Activities, Major: Tier 2 = All development,
121
+ see Section 7.2. Environmentally Sensitive Areas, DDC Reference = 74. Environmentally
122
+ Sensitive Areas, New A Construction = All development, see Section 7.4. Environmentally
123
+ Sensitive Areas, Minor: Tier 1 = . Environmentally Sensitive Areas, Major: Tier
124
+ 2 = . Drainage, DDC Reference = 74. Drainage, New A Construction = All development,
125
+ see Section 7.4. Drainage, Minor: Tier 1 = . Drainage, Major: Tier 2 = . Water
126
+ and Wastewater, DDC Reference = 7.6. Water and Wastewater, New A Construction
127
+ = All development,'
128
+ - '3. Step 3: Determination of Procedure:
129
+
130
+ Upon receipt of a complete application for a Certificate of Design Consistency,
131
+ the Director must determine the appropriate review procedure prescribed by sections
132
+ 2.10.1.D.3.a-d below.
133
+
134
+ Denton, Texas — Denton Development Code
135
+
136
+ Print Date: August 30, 2024
137
+
138
+ 136'
139
+ - '4B A. Tests and Inspections:
140
+
141
+ CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22,
142
+ 2020
143
+
144
+ Effective
145
+
146
+ July 1, 2024
147
+
148
+ [Insert Bid Number] [Insert Engineering Project Number]
149
+
150
+ 3.5
151
+
152
+ REPAIR
153
+
154
+ 33 31 23
155
+
156
+ COMBINATION AIR VALVE ASSEMBLIES FOR SEWER FORCE MAINS
157
+
158
+ Page 6 of 7
159
+
160
+ 1. Testing and inspection of Combination Air Valves shall be in accordance with
161
+ AWWA C512.'
162
+ - source_sentence: How do the regulations for Light Industrial (LI) and Heavy Industrial
163
+ (HI) districts differ in terms of permitted uses and development standards?
164
+ sentences:
165
+ - 'This print version includes the following Code amendments::
166
+
167
+ Other Nonresidential Districts. , 3 = . , 1 = 3.5.1 GO - General Office... , 2
168
+ = 3.5.1 GO - General Office... , 3 = . , 1 = - LI - Light Industrial. , 2 = -
169
+ LI - Light Industrial. , 3 = . , 1 = 3.5.2. , 2 = . , 3 = . , 1 = 3.5.3.. , 2
170
+ = HI - Heavy Industrial. , 3 = . , 1 = 3.5.4. , 2 = PF - Public Facilities.. ,
171
+ 3 = oa. , 1 = Summary -. , 2 = Summary -. , 3 = . 3.6, 1 = PD Planned Development
172
+ District. 3.6, 2 = PD Planned Development District. 3.6, 3 = . , 1 = 3.6.1 Purpose...
173
+ seeesesnsnseeeenens Review Procedure ... esse. , 2 = 3.6.1 Purpose... seeesesnsnseeeenens
174
+ Review Procedure ... esse. , 3 = . , 1 = 3.6.2. , 2 = .'
175
+ - '1.1 SUMMARY:
176
+
177
+ AADUNAPWNK, 1 = . AADUNAPWNK, 2 = . AADUNAPWNK, 3 = ensure the conduit is clean
178
+ and free from obstructions.. , 1 = . , 2 = . , 3 = 17) Conduits shall be placed
179
+ in an open trench at a minimum 24 inches (612. , 1 = . , 2 = . , 3 = mm) depth
180
+ below the curb grade in the sidewalk areas, or 18 inches (450 mm) below the finished
181
+ street grade in the street area.. PW CUO, 1 = . PW CUO, 2 = 18). PW CUO, 3 = Conduit
182
+ placed for concrete encasement shall be secured and supported in. HP, 1 = . HP,
183
+ 2 = . HP, 3 = such a manner the alignment will not be disturbed during placement
184
+ of the. , 1 = . , 2 = . , 3 = concrete.. CPAIANDNAHBPWNYRK, 1 = . CPAIANDNAHBPWNYRK,
185
+ 2 = . CPAIANDNAHBPWNYRK, 3 = Noconcrete shall be until all conduit ends have been
186
+ and. , 1 = . ,'
187
+ - 'E. Water Control:
188
+
189
+ 1. Surface Water
190
+
191
+ a. Furnish all materials and equipment and perform all incidental work required
192
+ to direct surface water away from the excavation.'
193
+ - source_sentence: How can I ensure that the curing compound we receive at the job
194
+ site meets the required specifications with the manufacturer's original containers
195
+ and labels intact?
196
+ sentences:
197
+ - 'B. Exemptions:
198
+
199
+ Unless otherwise provided in this DDC, the following shall be exempt from the
200
+ provisions of this Section 7.3: Land-Disturbing Activities:
201
+
202
+ 1. Grading and clearing in emergency situations involving immediate danger to
203
+ life and property or substantial fire hazards;
204
+
205
+ 2. Any activity where the total volume of material disturbed, stored, disposed
206
+ of or used as fill does not exceed 25 cubic yards and the area disturbed does
207
+ not exceed 2,000 square feet, provided it does not obstruct a watercourse and
208
+ is not located in a floodplain or other environmentally sensitive area;
209
+
210
+ 3. Soil-disturbing activities, excluding tree removal, that are associated with
211
+ normal agricultural crop operations; or
212
+
213
+ 4. Stockpiling and handling of earth material associated with commercial quarry
214
+ and landfill operations licensed under the state.
215
+
216
+ Denton, Texas — Denton Development Code
217
+
218
+ Print Date: August 30, 2024
219
+
220
+ 353'
221
+ - '8. Curing:
222
+
223
+ 03 00 00
224
+
225
+ CONCRETE AND CONCRETE REINFORCING
226
+
227
+ Page 10 of 18
228
+
229
+ 6) Curing compound to be delivered to the job site in the manufacturer''s original
230
+ containers only, with original label containing the following:
231
+
232
+ a) Manufacturer''s name
233
+
234
+ b) Trade name of the material
235
+
236
+ c) Batch number or symbol with which test samples may be correlated'
237
+ - '2. For Large Wind Energy Systems:
238
+
239
+ a. The minimum acreage for a large wind system shall be established based on the
240
+ setbacks of the turbine(s) and the height of the turbine(s);
241
+
242
+ b. All turbines located within the same large wind system property shall be of
243
+ a similar tower design, including the type, number of blades, and direction of
244
+ blade rotation;
245
+
246
+ c. Large wind systems shall be setback at least one and one-half times the height
247
+ of the turbine and rotor diameter from the property line. Large wind systems shall
248
+ also be setback at least one and one-half times the height of the turbine from
249
+ above ground telephone, electrical lines, and other uninhabitable structures;
250
+
251
+ d. Towers shall not be climbable up to 15 feet above ground level.'
252
+ pipeline_tag: sentence-similarity
253
+ library_name: sentence-transformers
254
+ metrics:
255
+ - cosine_accuracy@1
256
+ - cosine_accuracy@3
257
+ - cosine_accuracy@5
258
+ - cosine_accuracy@10
259
+ - cosine_precision@1
260
+ - cosine_precision@3
261
+ - cosine_precision@5
262
+ - cosine_precision@10
263
+ - cosine_recall@1
264
+ - cosine_recall@3
265
+ - cosine_recall@5
266
+ - cosine_recall@10
267
+ - cosine_ndcg@1
268
+ - cosine_ndcg@3
269
+ - cosine_ndcg@5
270
+ - cosine_ndcg@10
271
+ - cosine_mrr@1
272
+ - cosine_mrr@3
273
+ - cosine_mrr@5
274
+ - cosine_mrr@10
275
+ - cosine_map@100
276
+ model-index:
277
+ - name: worksphere
278
+ results:
279
+ - task:
280
+ type: information-retrieval
281
+ name: Information Retrieval
282
+ dataset:
283
+ name: dim 1024
284
+ type: dim_1024
285
+ metrics:
286
+ - type: cosine_accuracy@1
287
+ value: 0.030697674418604652
288
+ name: Cosine Accuracy@1
289
+ - type: cosine_accuracy@3
290
+ value: 0.3986046511627907
291
+ name: Cosine Accuracy@3
292
+ - type: cosine_accuracy@5
293
+ value: 0.5774418604651163
294
+ name: Cosine Accuracy@5
295
+ - type: cosine_accuracy@10
296
+ value: 0.7881395348837209
297
+ name: Cosine Accuracy@10
298
+ - type: cosine_precision@1
299
+ value: 0.030697674418604652
300
+ name: Cosine Precision@1
301
+ - type: cosine_precision@3
302
+ value: 0.13286821705426355
303
+ name: Cosine Precision@3
304
+ - type: cosine_precision@5
305
+ value: 0.11548837209302326
306
+ name: Cosine Precision@5
307
+ - type: cosine_precision@10
308
+ value: 0.07881395348837208
309
+ name: Cosine Precision@10
310
+ - type: cosine_recall@1
311
+ value: 0.030697674418604652
312
+ name: Cosine Recall@1
313
+ - type: cosine_recall@3
314
+ value: 0.3986046511627907
315
+ name: Cosine Recall@3
316
+ - type: cosine_recall@5
317
+ value: 0.5774418604651163
318
+ name: Cosine Recall@5
319
+ - type: cosine_recall@10
320
+ value: 0.7881395348837209
321
+ name: Cosine Recall@10
322
+ - type: cosine_ndcg@1
323
+ value: 0.030697674418604652
324
+ name: Cosine Ndcg@1
325
+ - type: cosine_ndcg@3
326
+ value: 0.23179382587458858
327
+ name: Cosine Ndcg@3
328
+ - type: cosine_ndcg@5
329
+ value: 0.3040553564598666
330
+ name: Cosine Ndcg@5
331
+ - type: cosine_ndcg@10
332
+ value: 0.37531956376470604
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@1
335
+ value: 0.030697674418604652
336
+ name: Cosine Mrr@1
337
+ - type: cosine_mrr@3
338
+ value: 0.17515503875969318
339
+ name: Cosine Mrr@3
340
+ - type: cosine_mrr@5
341
+ value: 0.21443410852713862
342
+ name: Cosine Mrr@5
343
+ - type: cosine_mrr@10
344
+ value: 0.24572388335179296
345
+ name: Cosine Mrr@10
346
+ - type: cosine_map@100
347
+ value: 0.2550755013176846
348
+ name: Cosine Map@100
349
+ - task:
350
+ type: information-retrieval
351
+ name: Information Retrieval
352
+ dataset:
353
+ name: dim 768
354
+ type: dim_768
355
+ metrics:
356
+ - type: cosine_accuracy@1
357
+ value: 0.030697674418604652
358
+ name: Cosine Accuracy@1
359
+ - type: cosine_accuracy@3
360
+ value: 0.3986046511627907
361
+ name: Cosine Accuracy@3
362
+ - type: cosine_accuracy@5
363
+ value: 0.5774418604651163
364
+ name: Cosine Accuracy@5
365
+ - type: cosine_accuracy@10
366
+ value: 0.7881395348837209
367
+ name: Cosine Accuracy@10
368
+ - type: cosine_precision@1
369
+ value: 0.030697674418604652
370
+ name: Cosine Precision@1
371
+ - type: cosine_precision@3
372
+ value: 0.13286821705426355
373
+ name: Cosine Precision@3
374
+ - type: cosine_precision@5
375
+ value: 0.11548837209302326
376
+ name: Cosine Precision@5
377
+ - type: cosine_precision@10
378
+ value: 0.07881395348837208
379
+ name: Cosine Precision@10
380
+ - type: cosine_recall@1
381
+ value: 0.030697674418604652
382
+ name: Cosine Recall@1
383
+ - type: cosine_recall@3
384
+ value: 0.3986046511627907
385
+ name: Cosine Recall@3
386
+ - type: cosine_recall@5
387
+ value: 0.5774418604651163
388
+ name: Cosine Recall@5
389
+ - type: cosine_recall@10
390
+ value: 0.7881395348837209
391
+ name: Cosine Recall@10
392
+ - type: cosine_ndcg@1
393
+ value: 0.030697674418604652
394
+ name: Cosine Ndcg@1
395
+ - type: cosine_ndcg@3
396
+ value: 0.23179382587458858
397
+ name: Cosine Ndcg@3
398
+ - type: cosine_ndcg@5
399
+ value: 0.3040553564598666
400
+ name: Cosine Ndcg@5
401
+ - type: cosine_ndcg@10
402
+ value: 0.37531956376470604
403
+ name: Cosine Ndcg@10
404
+ - type: cosine_mrr@1
405
+ value: 0.030697674418604652
406
+ name: Cosine Mrr@1
407
+ - type: cosine_mrr@3
408
+ value: 0.17515503875969318
409
+ name: Cosine Mrr@3
410
+ - type: cosine_mrr@5
411
+ value: 0.21443410852713862
412
+ name: Cosine Mrr@5
413
+ - type: cosine_mrr@10
414
+ value: 0.24572388335179296
415
+ name: Cosine Mrr@10
416
+ - type: cosine_map@100
417
+ value: 0.2550755013176846
418
+ name: Cosine Map@100
419
+ - task:
420
+ type: information-retrieval
421
+ name: Information Retrieval
422
+ dataset:
423
+ name: dim 512
424
+ type: dim_512
425
+ metrics:
426
+ - type: cosine_accuracy@1
427
+ value: 0.03
428
+ name: Cosine Accuracy@1
429
+ - type: cosine_accuracy@3
430
+ value: 0.39069767441860465
431
+ name: Cosine Accuracy@3
432
+ - type: cosine_accuracy@5
433
+ value: 0.5644186046511628
434
+ name: Cosine Accuracy@5
435
+ - type: cosine_accuracy@10
436
+ value: 0.781860465116279
437
+ name: Cosine Accuracy@10
438
+ - type: cosine_precision@1
439
+ value: 0.03
440
+ name: Cosine Precision@1
441
+ - type: cosine_precision@3
442
+ value: 0.13023255813953488
443
+ name: Cosine Precision@3
444
+ - type: cosine_precision@5
445
+ value: 0.11288372093023255
446
+ name: Cosine Precision@5
447
+ - type: cosine_precision@10
448
+ value: 0.0781860465116279
449
+ name: Cosine Precision@10
450
+ - type: cosine_recall@1
451
+ value: 0.03
452
+ name: Cosine Recall@1
453
+ - type: cosine_recall@3
454
+ value: 0.39069767441860465
455
+ name: Cosine Recall@3
456
+ - type: cosine_recall@5
457
+ value: 0.5644186046511628
458
+ name: Cosine Recall@5
459
+ - type: cosine_recall@10
460
+ value: 0.781860465116279
461
+ name: Cosine Recall@10
462
+ - type: cosine_ndcg@1
463
+ value: 0.03
464
+ name: Cosine Ndcg@1
465
+ - type: cosine_ndcg@3
466
+ value: 0.22663893445598368
467
+ name: Cosine Ndcg@3
468
+ - type: cosine_ndcg@5
469
+ value: 0.2968091108509391
470
+ name: Cosine Ndcg@5
471
+ - type: cosine_ndcg@10
472
+ value: 0.37060640353852903
473
+ name: Cosine Ndcg@10
474
+ - type: cosine_mrr@1
475
+ value: 0.03
476
+ name: Cosine Mrr@1
477
+ - type: cosine_mrr@3
478
+ value: 0.17096899224806486
479
+ name: Cosine Mrr@3
480
+ - type: cosine_mrr@5
481
+ value: 0.20909689922481253
482
+ name: Cosine Mrr@5
483
+ - type: cosine_mrr@10
484
+ value: 0.2416426725729079
485
+ name: Cosine Mrr@10
486
+ - type: cosine_map@100
487
+ value: 0.2512032580492767
488
+ name: Cosine Map@100
489
+ - task:
490
+ type: information-retrieval
491
+ name: Information Retrieval
492
+ dataset:
493
+ name: dim 256
494
+ type: dim_256
495
+ metrics:
496
+ - type: cosine_accuracy@1
497
+ value: 0.029534883720930234
498
+ name: Cosine Accuracy@1
499
+ - type: cosine_accuracy@3
500
+ value: 0.3774418604651163
501
+ name: Cosine Accuracy@3
502
+ - type: cosine_accuracy@5
503
+ value: 0.5502325581395349
504
+ name: Cosine Accuracy@5
505
+ - type: cosine_accuracy@10
506
+ value: 0.7644186046511627
507
+ name: Cosine Accuracy@10
508
+ - type: cosine_precision@1
509
+ value: 0.029534883720930234
510
+ name: Cosine Precision@1
511
+ - type: cosine_precision@3
512
+ value: 0.1258139534883721
513
+ name: Cosine Precision@3
514
+ - type: cosine_precision@5
515
+ value: 0.11004651162790699
516
+ name: Cosine Precision@5
517
+ - type: cosine_precision@10
518
+ value: 0.07644186046511628
519
+ name: Cosine Precision@10
520
+ - type: cosine_recall@1
521
+ value: 0.029534883720930234
522
+ name: Cosine Recall@1
523
+ - type: cosine_recall@3
524
+ value: 0.3774418604651163
525
+ name: Cosine Recall@3
526
+ - type: cosine_recall@5
527
+ value: 0.5502325581395349
528
+ name: Cosine Recall@5
529
+ - type: cosine_recall@10
530
+ value: 0.7644186046511627
531
+ name: Cosine Recall@10
532
+ - type: cosine_ndcg@1
533
+ value: 0.029534883720930234
534
+ name: Cosine Ndcg@1
535
+ - type: cosine_ndcg@3
536
+ value: 0.21910859618189715
537
+ name: Cosine Ndcg@3
538
+ - type: cosine_ndcg@5
539
+ value: 0.2887354612410299
540
+ name: Cosine Ndcg@5
541
+ - type: cosine_ndcg@10
542
+ value: 0.3613007541197287
543
+ name: Cosine Ndcg@10
544
+ - type: cosine_mrr@1
545
+ value: 0.029534883720930234
546
+ name: Cosine Mrr@1
547
+ - type: cosine_mrr@3
548
+ value: 0.16538759689922747
549
+ name: Cosine Mrr@3
550
+ - type: cosine_mrr@5
551
+ value: 0.20312015503876593
552
+ name: Cosine Mrr@5
553
+ - type: cosine_mrr@10
554
+ value: 0.23504817275747772
555
+ name: Cosine Mrr@10
556
+ - type: cosine_map@100
557
+ value: 0.2452995067602724
558
+ name: Cosine Map@100
559
+ ---
560
+
561
+ # worksphere
562
+
563
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
564
+
565
+ ## Model Details
566
+
567
+ ### Model Description
568
+ - **Model Type:** Sentence Transformer
569
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
570
+ - **Maximum Sequence Length:** 512 tokens
571
+ - **Output Dimensionality:** 768 dimensions
572
+ - **Similarity Function:** Cosine Similarity
573
+ <!-- - **Training Dataset:** Unknown -->
574
+ - **Language:** en
575
+ - **License:** apache-2.0
576
+
577
+ ### Model Sources
578
+
579
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
580
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
581
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
582
+
583
+ ### Full Model Architecture
584
+
585
+ ```
586
+ SentenceTransformer(
587
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
588
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
589
+ (2): Normalize()
590
+ )
591
+ ```
592
+
593
+ ## Usage
594
+
595
+ ### Direct Usage (Sentence Transformers)
596
+
597
+ First install the Sentence Transformers library:
598
+
599
+ ```bash
600
+ pip install -U sentence-transformers
601
+ ```
602
+
603
+ Then you can load this model and run inference.
604
+ ```python
605
+ from sentence_transformers import SentenceTransformer
606
+
607
+ # Download from the 🤗 Hub
608
+ model = SentenceTransformer("sabber/worksphere-regulations-embedding_bge")
609
+ # Run inference
610
+ sentences = [
611
+ "How can I ensure that the curing compound we receive at the job site meets the required specifications with the manufacturer's original containers and labels intact?",
612
+ "8. Curing:\n03 00 00\nCONCRETE AND CONCRETE REINFORCING\nPage 10 of 18\n6) Curing compound to be delivered to the job site in the manufacturer's original containers only, with original label containing the following:\na) Manufacturer's name\nb) Trade name of the material\nc) Batch number or symbol with which test samples may be correlated",
613
+ '2. For Large Wind Energy Systems:\na. The minimum acreage for a large wind system shall be established based on the setbacks of the turbine(s) and the height of the turbine(s);\nb. All turbines located within the same large wind system property shall be of a similar tower design, including the type, number of blades, and direction of blade rotation;\nc. Large wind systems shall be setback at least one and one-half times the height of the turbine and rotor diameter from the property line. Large wind systems shall also be setback at least one and one-half times the height of the turbine from above ground telephone, electrical lines, and other uninhabitable structures;\nd. Towers shall not be climbable up to 15 feet above ground level.',
614
+ ]
615
+ embeddings = model.encode(sentences)
616
+ print(embeddings.shape)
617
+ # [3, 768]
618
+
619
+ # Get the similarity scores for the embeddings
620
+ similarities = model.similarity(embeddings, embeddings)
621
+ print(similarities.shape)
622
+ # [3, 3]
623
+ ```
624
+
625
+ <!--
626
+ ### Direct Usage (Transformers)
627
+
628
+ <details><summary>Click to see the direct usage in Transformers</summary>
629
+
630
+ </details>
631
+ -->
632
+
633
+ <!--
634
+ ### Downstream Usage (Sentence Transformers)
635
+
636
+ You can finetune this model on your own dataset.
637
+
638
+ <details><summary>Click to expand</summary>
639
+
640
+ </details>
641
+ -->
642
+
643
+ <!--
644
+ ### Out-of-Scope Use
645
+
646
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
647
+ -->
648
+
649
+ ## Evaluation
650
+
651
+ ### Metrics
652
+
653
+ #### Information Retrieval
654
+
655
+ * Datasets: `dim_1024`, `dim_768`, `dim_512` and `dim_256`
656
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
657
+
658
+ | Metric | dim_1024 | dim_768 | dim_512 | dim_256 |
659
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|
660
+ | cosine_accuracy@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
661
+ | cosine_accuracy@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
662
+ | cosine_accuracy@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
663
+ | cosine_accuracy@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
664
+ | cosine_precision@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
665
+ | cosine_precision@3 | 0.1329 | 0.1329 | 0.1302 | 0.1258 |
666
+ | cosine_precision@5 | 0.1155 | 0.1155 | 0.1129 | 0.11 |
667
+ | cosine_precision@10 | 0.0788 | 0.0788 | 0.0782 | 0.0764 |
668
+ | cosine_recall@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
669
+ | cosine_recall@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
670
+ | cosine_recall@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
671
+ | cosine_recall@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
672
+ | cosine_ndcg@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
673
+ | cosine_ndcg@3 | 0.2318 | 0.2318 | 0.2266 | 0.2191 |
674
+ | cosine_ndcg@5 | 0.3041 | 0.3041 | 0.2968 | 0.2887 |
675
+ | **cosine_ndcg@10** | **0.3753** | **0.3753** | **0.3706** | **0.3613** |
676
+ | cosine_mrr@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
677
+ | cosine_mrr@3 | 0.1752 | 0.1752 | 0.171 | 0.1654 |
678
+ | cosine_mrr@5 | 0.2144 | 0.2144 | 0.2091 | 0.2031 |
679
+ | cosine_mrr@10 | 0.2457 | 0.2457 | 0.2416 | 0.235 |
680
+ | cosine_map@100 | 0.2551 | 0.2551 | 0.2512 | 0.2453 |
681
+
682
+ <!--
683
+ ## Bias, Risks and Limitations
684
+
685
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
686
+ -->
687
+
688
+ <!--
689
+ ### Recommendations
690
+
691
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
692
+ -->
693
+
694
+ ## Training Details
695
+
696
+ ### Training Dataset
697
+
698
+ #### Unnamed Dataset
699
+
700
+
701
+ * Size: 17,198 training samples
702
+ * Columns: <code>question</code> and <code>context</code>
703
+ * Approximate statistics based on the first 1000 samples:
704
+ | | question | context |
705
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
706
+ | type | string | string |
707
+ | details | <ul><li>min: 14 tokens</li><li>mean: 26.6 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 140.8 tokens</li><li>max: 259 tokens</li></ul> |
708
+ * Samples:
709
+ | question | context |
710
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
711
+ | <code>Are there any specific guidelines or requirements for the installation of tree supports as outlined in the regulations?</code> | <code>SECTION 32 93 00:<br>Cast-in-Place 31 25 14 - Erosion and 32 13 13 - Concrete Paving. 32 13 16 - Decorative Concrete. a. Measurement 1) Measured per each Tree planted. b. Payment 1) The work performed and materials and measured as provided under price bid per each for Tree 2) Various caliper inches. The price bid shall include: 1) Furnishing and installing Tree as 2) Preparing excavation pit 3) Topsoil, fertilizer, mulch, and planting mix, 1 = . , 1 = Tree. , 1 = furnished in accordance with this item "Measurement" will be paid for at the unit for:. planted, 1 = . specified, 1 = . by the Drawings, 1 = . supports, 1 = . [Insert Bid Number], 1 = . [Insert, 1 = . 4), 1 = Plant. Number], 1 = Number]. Engineering Project, 1 = Engineering Project<br>Effective July 1, 2024<br>32 93 00<br>PLANTINGS<br>Page 2 of 24<br>eee<br>BER<br>BPRERR</code> |
712
+ | <code>What specific information do I need to include in my application to meet the standards for grouted installations?</code> | <code>1.1 SUMMARY:<br>= . 36, 2 = . 36, 3 = (1) requirements a qualified testing laboratory.. 37, 1 = . 37, 2 = . 37, 3 = Submit a minimum of 3 other similar projects where the proposed grout mix. 38, 1 = . 38, 2 = . 38, 3 = design was used.. 39 40, 1 = . 39 40, 2 = . 39 40, 3 = anticipated volumes of grout to be pumped for each. , 1 = . , 2 = . , 3 = Submit application and reach grouted.. 41, 1 = 4.. 41, 2 = . 41, 3 = Additional requirements for installations of carrier pipe 24-inch and larger:. 42, 1 = . 42, 2 = a.. 42, 3 = Submit work plan describing the carrier pipe installation equipment, materials. 43 44, 1 = . 43 44, 2 = b.. 43 44, 3 = employed. For installations without holding jacks or a restrained spacer, provide buoyant<br>CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22, 2020 Effective July 1, 2024<br>[Insert Engineering Project Number] [Insert Bid Number]<br>eK<br>BWN<br>nA<br>20<br>21<br>22<br>23<br>24</code> |
713
+ | <code>In the event of a quasi judicial hearing, who else besides the site owner(s) should we inform about the decision notification process, and how do we manage their requests for a copy of the decision?</code> | <code>Notice of Decision:<br>1. Within 10 days after a final decision on an application, the Director shall provide written notification of the decision, unless the applicant was present at the meeting where the decision was made or required by law.<br>2. If the review involves a quasi-judicial hearing, the Director shall, within 10 days after a final decision on the application, provide a written notification of the decision to the owner(s) of the subject site (unless the applicant was present at the meeting where the decision was made or required by law), and any other person that submitted a written request for a copy of the decision before its effective date.</code> |
714
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
715
+ ```json
716
+ {
717
+ "loss": "MultipleNegativesRankingLoss",
718
+ "matryoshka_dims": [
719
+ 768,
720
+ 512,
721
+ 256
722
+ ],
723
+ "matryoshka_weights": [
724
+ 1,
725
+ 1,
726
+ 1
727
+ ],
728
+ "n_dims_per_step": -1
729
+ }
730
+ ```
731
+
732
+ ### Training Hyperparameters
733
+ #### Non-Default Hyperparameters
734
+
735
+ - `eval_strategy`: epoch
736
+ - `per_device_train_batch_size`: 32
737
+ - `per_device_eval_batch_size`: 16
738
+ - `gradient_accumulation_steps`: 16
739
+ - `learning_rate`: 2e-05
740
+ - `num_train_epochs`: 8
741
+ - `lr_scheduler_type`: cosine
742
+ - `warmup_ratio`: 0.1
743
+ - `bf16`: True
744
+ - `tf32`: True
745
+ - `load_best_model_at_end`: True
746
+ - `optim`: adamw_torch_fused
747
+ - `batch_sampler`: no_duplicates
748
+
749
+ #### All Hyperparameters
750
+ <details><summary>Click to expand</summary>
751
+
752
+ - `overwrite_output_dir`: False
753
+ - `do_predict`: False
754
+ - `eval_strategy`: epoch
755
+ - `prediction_loss_only`: True
756
+ - `per_device_train_batch_size`: 32
757
+ - `per_device_eval_batch_size`: 16
758
+ - `per_gpu_train_batch_size`: None
759
+ - `per_gpu_eval_batch_size`: None
760
+ - `gradient_accumulation_steps`: 16
761
+ - `eval_accumulation_steps`: None
762
+ - `learning_rate`: 2e-05
763
+ - `weight_decay`: 0.0
764
+ - `adam_beta1`: 0.9
765
+ - `adam_beta2`: 0.999
766
+ - `adam_epsilon`: 1e-08
767
+ - `max_grad_norm`: 1.0
768
+ - `num_train_epochs`: 8
769
+ - `max_steps`: -1
770
+ - `lr_scheduler_type`: cosine
771
+ - `lr_scheduler_kwargs`: {}
772
+ - `warmup_ratio`: 0.1
773
+ - `warmup_steps`: 0
774
+ - `log_level`: passive
775
+ - `log_level_replica`: warning
776
+ - `log_on_each_node`: True
777
+ - `logging_nan_inf_filter`: True
778
+ - `save_safetensors`: True
779
+ - `save_on_each_node`: False
780
+ - `save_only_model`: False
781
+ - `restore_callback_states_from_checkpoint`: False
782
+ - `no_cuda`: False
783
+ - `use_cpu`: False
784
+ - `use_mps_device`: False
785
+ - `seed`: 42
786
+ - `data_seed`: None
787
+ - `jit_mode_eval`: False
788
+ - `use_ipex`: False
789
+ - `bf16`: True
790
+ - `fp16`: False
791
+ - `fp16_opt_level`: O1
792
+ - `half_precision_backend`: auto
793
+ - `bf16_full_eval`: False
794
+ - `fp16_full_eval`: False
795
+ - `tf32`: True
796
+ - `local_rank`: 0
797
+ - `ddp_backend`: None
798
+ - `tpu_num_cores`: None
799
+ - `tpu_metrics_debug`: False
800
+ - `debug`: []
801
+ - `dataloader_drop_last`: False
802
+ - `dataloader_num_workers`: 0
803
+ - `dataloader_prefetch_factor`: None
804
+ - `past_index`: -1
805
+ - `disable_tqdm`: False
806
+ - `remove_unused_columns`: True
807
+ - `label_names`: None
808
+ - `load_best_model_at_end`: True
809
+ - `ignore_data_skip`: False
810
+ - `fsdp`: []
811
+ - `fsdp_min_num_params`: 0
812
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
813
+ - `fsdp_transformer_layer_cls_to_wrap`: None
814
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
815
+ - `deepspeed`: None
816
+ - `label_smoothing_factor`: 0.0
817
+ - `optim`: adamw_torch_fused
818
+ - `optim_args`: None
819
+ - `adafactor`: False
820
+ - `group_by_length`: False
821
+ - `length_column_name`: length
822
+ - `ddp_find_unused_parameters`: None
823
+ - `ddp_bucket_cap_mb`: None
824
+ - `ddp_broadcast_buffers`: False
825
+ - `dataloader_pin_memory`: True
826
+ - `dataloader_persistent_workers`: False
827
+ - `skip_memory_metrics`: True
828
+ - `use_legacy_prediction_loop`: False
829
+ - `push_to_hub`: False
830
+ - `resume_from_checkpoint`: None
831
+ - `hub_model_id`: None
832
+ - `hub_strategy`: every_save
833
+ - `hub_private_repo`: False
834
+ - `hub_always_push`: False
835
+ - `gradient_checkpointing`: False
836
+ - `gradient_checkpointing_kwargs`: None
837
+ - `include_inputs_for_metrics`: False
838
+ - `eval_do_concat_batches`: True
839
+ - `fp16_backend`: auto
840
+ - `push_to_hub_model_id`: None
841
+ - `push_to_hub_organization`: None
842
+ - `mp_parameters`:
843
+ - `auto_find_batch_size`: False
844
+ - `full_determinism`: False
845
+ - `torchdynamo`: None
846
+ - `ray_scope`: last
847
+ - `ddp_timeout`: 1800
848
+ - `torch_compile`: False
849
+ - `torch_compile_backend`: None
850
+ - `torch_compile_mode`: None
851
+ - `dispatch_batches`: None
852
+ - `split_batches`: None
853
+ - `include_tokens_per_second`: False
854
+ - `include_num_input_tokens_seen`: False
855
+ - `neftune_noise_alpha`: None
856
+ - `optim_target_modules`: None
857
+ - `batch_eval_metrics`: False
858
+ - `prompts`: None
859
+ - `batch_sampler`: no_duplicates
860
+ - `multi_dataset_batch_sampler`: proportional
861
+
862
+ </details>
863
+
864
+ ### Training Logs
865
+ | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 |
866
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
867
+ | 0.2974 | 10 | 2.3168 | - | - | - | - |
868
+ | 0.5948 | 20 | 1.2839 | - | - | - | - |
869
+ | 0.8922 | 30 | 0.6758 | - | - | - | - |
870
+ | 0.9814 | 33 | - | 0.3592 | 0.3592 | 0.3556 | 0.3496 |
871
+ | 1.1896 | 40 | 0.4651 | - | - | - | - |
872
+ | 1.4870 | 50 | 0.3707 | - | - | - | - |
873
+ | 1.7844 | 60 | 0.2941 | - | - | - | - |
874
+ | 1.9926 | 67 | - | 0.3732 | 0.3732 | 0.3699 | 0.3601 |
875
+ | 2.0818 | 70 | 0.2651 | - | - | - | - |
876
+ | 2.3792 | 80 | 0.2341 | - | - | - | - |
877
+ | 2.6766 | 90 | 0.2093 | - | - | - | - |
878
+ | 2.9740 | 100 | 0.1812 | 0.3747 | 0.3747 | 0.3718 | 0.3626 |
879
+ | 3.2714 | 110 | 0.1717 | - | - | - | - |
880
+ | 3.5688 | 120 | 0.1496 | - | - | - | - |
881
+ | 3.8662 | 130 | 0.1472 | - | - | - | - |
882
+ | 3.9851 | 134 | - | 0.3742 | 0.3742 | 0.3727 | 0.3628 |
883
+ | 4.1636 | 140 | 0.1304 | - | - | - | - |
884
+ | 4.4610 | 150 | 0.1229 | - | - | - | - |
885
+ | 4.7584 | 160 | 0.1085 | - | - | - | - |
886
+ | **4.9963** | **168** | **-** | **0.3745** | **0.3745** | **0.3717** | **0.361** |
887
+ | 5.0558 | 170 | 0.1144 | - | - | - | - |
888
+ | 5.3532 | 180 | 0.1088 | - | - | - | - |
889
+ | 5.6506 | 190 | 0.0937 | - | - | - | - |
890
+ | 5.9480 | 200 | 0.1023 | - | - | - | - |
891
+ | 5.9777 | 201 | - | 0.3749 | 0.3749 | 0.3704 | 0.3603 |
892
+ | 6.2454 | 210 | 0.0942 | - | - | - | - |
893
+ | 6.5428 | 220 | 0.0919 | - | - | - | - |
894
+ | 6.8401 | 230 | 0.0939 | - | - | - | - |
895
+ | 6.9888 | 235 | - | 0.3755 | 0.3755 | 0.3705 | 0.3603 |
896
+ | 7.1375 | 240 | 0.0925 | - | - | - | - |
897
+ | 7.4349 | 250 | 0.0928 | - | - | - | - |
898
+ | 7.7323 | 260 | 0.0869 | - | - | - | - |
899
+ | 7.8513 | 264 | - | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
900
+
901
+ * The bold row denotes the saved checkpoint.
902
+
903
+ ### Framework Versions
904
+ - Python: 3.11.10
905
+ - Sentence Transformers: 3.3.1
906
+ - Transformers: 4.41.2
907
+ - PyTorch: 2.4.1+cu124
908
+ - Accelerate: 1.3.0
909
+ - Datasets: 2.19.1
910
+ - Tokenizers: 0.19.1
911
+
912
+ ## Citation
913
+
914
+ ### BibTeX
915
+
916
+ #### Sentence Transformers
917
+ ```bibtex
918
+ @inproceedings{reimers-2019-sentence-bert,
919
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
920
+ author = "Reimers, Nils and Gurevych, Iryna",
921
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
922
+ month = "11",
923
+ year = "2019",
924
+ publisher = "Association for Computational Linguistics",
925
+ url = "https://arxiv.org/abs/1908.10084",
926
+ }
927
+ ```
928
+
929
+ #### MatryoshkaLoss
930
+ ```bibtex
931
+ @misc{kusupati2024matryoshka,
932
+ title={Matryoshka Representation Learning},
933
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
934
+ year={2024},
935
+ eprint={2205.13147},
936
+ archivePrefix={arXiv},
937
+ primaryClass={cs.LG}
938
+ }
939
+ ```
940
+
941
+ #### MultipleNegativesRankingLoss
942
+ ```bibtex
943
+ @misc{henderson2017efficient,
944
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
945
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
946
+ year={2017},
947
+ eprint={1705.00652},
948
+ archivePrefix={arXiv},
949
+ primaryClass={cs.CL}
950
+ }
951
+ ```
952
+
953
+ <!--
954
+ ## Glossary
955
+
956
+ *Clearly define terms in order to be accessible across audiences.*
957
+ -->
958
+
959
+ <!--
960
+ ## Model Card Authors
961
+
962
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
963
+ -->
964
+
965
+ <!--
966
+ ## Model Card Contact
967
+
968
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
969
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.4.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd86397a978d25b841543e5d2509589bfde25b3162e025d0f0a4a4c10bbb510
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff