salym commited on
Commit
e6e7900
·
verified ·
1 Parent(s): d6eb573

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.22 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce470f9982c61004dc4c2df3176c92e22b8ba11e2f675ce9602e096cd9c02d2
3
+ size 111486
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e7ca0bb1630>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e7ca0b9f000>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1742481256458945776,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAj5auv5JMtz7GZRw/mJWDPovdC7sRkN4+mJWDPovdC7sRkN4+cKiov70Mqr8uPC0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjmW5v3XJkD4jIqI/7CBnv72WET+tlxA9SAifP2H+w7/G7hi+7wf+vkfbpb9+2I0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPlq6/kky3PsZlHD/h1lC/38KgvQYsvD+YlYM+i90LuxGQ3j5fm+o+jqr6uZaxwT6YlYM+i90LuxGQ3j5fm+o+jqr6uZaxwT5wqKi/vQyqvy48LT+LyEC/0MyHv4dq1T+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.3639697 0.35800606 0.61092794]\n [ 0.25700068 -0.00213418 0.4346929 ]\n [ 0.25700068 -0.00213418 0.4346929 ]\n [-1.3176403 -1.3285137 0.6766995 ]]",
34
+ "desired_goal": "[[-1.4484117 0.282787 1.2666668 ]\n [-0.9028461 0.56870633 0.0353009 ]\n [ 1.2424402 -1.5312005 -0.14934835]\n [-0.49615428 -1.2957543 1.1081693 ]]",
35
+ "observation": "[[-1.3639697e+00 3.5800606e-01 6.1092794e-01 -8.1577879e-01\n -7.8496687e-02 1.4700935e+00]\n [ 2.5700068e-01 -2.1341767e-03 4.3469289e-01 4.5821664e-01\n -4.7810789e-04 3.7830800e-01]\n [ 2.5700068e-01 -2.1341767e-03 4.3469289e-01 4.5821664e-01\n -4.7810789e-04 3.7830800e-01]\n [-1.3176403e+00 -1.3285137e+00 6.7669952e-01 -7.5306004e-01\n -1.0609379e+00 1.6673135e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAhiMvTwDnD0D3Ig+K/AKvkkhmD0D4Io+YOkWvuCRB74BZQY+n1+TPR+LHb1hLRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.06840517 0.07617804 0.26730356]\n [-0.1356818 0.07428224 0.27124032]\n [-0.14737463 -0.1323924 0.13124467]\n [ 0.07195973 -0.03846275 0.14958717]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RbD/EOy3WMAWyUSwOMAXSUR0ChKnay0KJEdX2UKGgGR7/V35N47ihnaAdLBGgIR0ChKjm+TNdJdX2UKGgGR7/Syhi9Zid8aAdLBGgIR0ChKe/5LytndX2UKGgGR7/HVhkRSP2gaAdLA2gIR0ChKoYI8hcJdX2UKGgGR7/XCKJl8PWhaAdLBGgIR0ChKtOq//NrdX2UKGgGR7+6+vhZQpF1aAdLAmgIR0ChKkNHYpUhdX2UKGgGR7+xIvrWy1NQaAdLAmgIR0ChKflvqC6IdX2UKGgGR7/I0aZQYUFjaAdLA2gIR0ChKpYwqRU4dX2UKGgGR7/BP557gKnfaAdLAmgIR0ChKk6rNnoQdX2UKGgGR7+2z8gpz90jaAdLAmgIR0ChKgUxubZwdX2UKGgGR7/DGEPDpC8faAdLA2gIR0ChKuSbpeNUdX2UKGgGR7/IP1ct5D7ZaAdLA2gIR0ChKl0wSJ0odX2UKGgGR7/CXWvr4WUKaAdLA2gIR0ChKhOOCGvfdX2UKGgGR7/cwsGxD9fkaAdLBGgIR0ChKqmvGIbgdX2UKGgGR7/de3QUpNKzaAdLBGgIR0ChKvnzg/C7dX2UKGgGR7+zpQk5ZKWcaAdLAmgIR0ChKh/f4yoGdX2UKGgGR7+oWJrLyMDPaAdLAWgIR0ChKv8D8tPIdX2UKGgGR7/PbSqlxffGaAdLA2gIR0ChKrsGorFwdX2UKGgGR7/CMa0hNdqtaAdLAmgIR0ChKinTiKixdX2UKGgGR7+j7qIJqqOtaAdLAWgIR0ChKsABT4tZdX2UKGgGR7/ZV0Lc9GI9aAdLBWgIR0ChKnjf3vhIdX2UKGgGR7/NoSL61stTaAdLA2gIR0ChKw2HLzPKdX2UKGgGR7+9FUhmoR7JaAdLAmgIR0ChKspy6tkndX2UKGgGR7/Fsw+MZP2xaAdLAmgIR0ChKxdPLxI8dX2UKGgGR7/KrnTy8SPEaAdLA2gIR0ChKobHp8nedX2UKGgGR7/cnyd4FA3UaAdLBGgIR0ChKjzfaYeDdX2UKGgGR7/cK/mDDjzaaAdLBGgIR0ChKtl8G9pRdX2UKGgGR7/PCj1wo9cKaAdLA2gIR0ChKpHogV45dX2UKGgGR7/bN8ma6STyaAdLBGgIR0ChKyj4HoovdX2UKGgGR7/cK15Sm65HaAdLBGgIR0ChKk4zzmOmdX2UKGgGR7/RVEd/8VHnaAdLA2gIR0ChKuctf5UMdX2UKGgGR7/X1Fpfx+a0aAdLBGgIR0ChKqN0eU6gdX2UKGgGR7/UszEaVD8caAdLA2gIR0ChKlmSIP9UdX2UKGgGR7/Vm+j/MnqnaAdLBGgIR0ChKzhMi8nNdX2UKGgGR7/Ed+5OJtSAaAdLAmgIR0ChKq1SwW30dX2UKGgGR7/BwiJO32EkaAdLAmgIR0ChKmNrTH81dX2UKGgGR7/eXkHUtqYaaAdLBGgIR0ChKvkG7jDLdX2UKGgGR7/K6zVtoBaLaAdLA2gIR0ChK0XrleWwdX2UKGgGR7/CCaJAMUh3aAdLAmgIR0ChKrU+cH4XdX2UKGgGR7/WRXOnl4keaAdLA2gIR0ChKm8BdUsGdX2UKGgGR7/IwoLG7z06aAdLA2gIR0ChK1NXgccVdX2UKGgGR7/ZqIrOJLuhaAdLBGgIR0ChKwq8DjiodX2UKGgGR7/OFAVwgkkbaAdLA2gIR0ChKsL+xW1ddX2UKGgGR7/TN+9alk6LaAdLA2gIR0ChKnxwQ176dX2UKGgGR7+4D7qIJqqPaAdLAmgIR0ChKxIDoyKvdX2UKGgGR7+YE4ecQRPHaAdLAWgIR0ChKxWiUPhAdX2UKGgGR7/QPBzmwJPZaAdLA2gIR0ChKs4jKPn0dX2UKGgGR7/fPdEb5uZUaAdLBGgIR0ChK2LiEQGwdX2UKGgGR7/M2ycCo0hvaAdLA2gIR0ChKogAyVOcdX2UKGgGR7/C8GLUCq6waAdLAmgIR0ChKtgb6xgRdX2UKGgGR7/AiMYMvyskaAdLAmgIR0ChK2zJQtSRdX2UKGgGR7/HEroW56MSaAdLA2gIR0ChKyPtlZoxdX2UKGgGR7/AQYk3S8aoaAdLAmgIR0ChKpIXTEzgdX2UKGgGR7+3xLCemNzbaAdLAmgIR0ChKyr/S6UadX2UKGgGR7/SUoa1kUblaAdLA2gIR0ChKuN6HCXQdX2UKGgGR7+4ir1dxAB1aAdLAmgIR0ChKpl6AvtddX2UKGgGR7/TztkWhysCaAdLA2gIR0ChK3hCtzS1dX2UKGgGR7+7IuGsV+I/aAdLAmgIR0ChKzT+vQnhdX2UKGgGR7/E+LWI42jxaAdLAmgIR0ChKu1KPGQ0dX2UKGgGR7/CT5ftx+8XaAdLAmgIR0ChKqNga3qidX2UKGgGR7/ZjoIOYplSaAdLBGgIR0ChK4kleF+NdX2UKGgGR7/IoUi6g/TtaAdLA2gIR0ChK0AtnPE9dX2UKGgGR7/PASFoL5RCaAdLA2gIR0ChKvhxPwd9dX2UKGgGR7/N+85CF9KFaAdLA2gIR0ChKq8qWkaddX2UKGgGR7/Lr9ETg2qDaAdLA2gIR0ChK5gPEsJ6dX2UKGgGR7/WBwdbPhQ4aAdLA2gIR0ChK09ZA6dUdX2UKGgGR7/OzMzMzMzNaAdLA2gIR0ChKwedK/VRdX2UKGgGR7/LY6GQCCBgaAdLA2gIR0ChKr3K0UoKdX2UKGgGR7+/lcQiA2AHaAdLAmgIR0ChK1cm8dxRdX2UKGgGR7++5CngpBomaAdLAmgIR0ChKw9sabWmdX2UKGgGR7/SN34bjtG/aAdLA2gIR0ChK6QQtjCpdX2UKGgGR7+4yWRigCfZaAdLAmgIR0ChK2FBY3efdX2UKGgGR7/X9kz41xbTaAdLBGgIR0ChKs+uNgjRdX2UKGgGR7/BXsgMc6vJaAdLAmgIR0ChK65zHS4OdX2UKGgGR7/RH5aePJaJaAdLA2gIR0ChKx3NC7btdX2UKGgGR7+/UkOZssQNaAdLAmgIR0ChKtdpZfUndX2UKGgGR7/XlrM1TBInaAdLA2gIR0ChK2z4+KTCdX2UKGgGR7/N7k4m1IAfaAdLA2gIR0ChKykGZ/kOdX2UKGgGR7/E0CzTnaFmaAdLAmgIR0ChKt8kt29tdX2UKGgGR7/LmRvFWGRFaAdLBGgIR0ChK8BDw6QvdX2UKGgGR7/A7g88s+V1aAdLAmgIR0ChK3dk8RthdX2UKGgGR7+7dTHbRF7VaAdLAmgIR0ChKum0eEIxdX2UKGgGR7+5oUSIxgy/aAdLAmgIR0ChK8h4lhPTdX2UKGgGR7/E0Y0l7dBTaAdLAmgIR0ChK3+Bg/kedX2UKGgGR7/SDhtLteD4aAdLA2gIR0ChKzfYJ3PidX2UKGgGR7/Ja/yoXKr8aAdLA2gIR0ChKvVjZteldX2UKGgGR7/OeqaPS2H+aAdLA2gIR0ChK41f/m1ZdX2UKGgGR7/V+WGATZg5aAdLBGgIR0ChK9ovalDXdX2UKGgGR7/XxbSqlxffaAdLBGgIR0ChK0lirksCdX2UKGgGR7+5pFkQPI4maAdLAmgIR0ChKv+QEIPcdX2UKGgGR7+v6KtPpIMCaAdLAmgIR0ChK+HZTQ3QdX2UKGgGR7/I0j1PFefJaAdLA2gIR0ChK5jwhGH6dX2UKGgGR7/H63y7PIGRaAdLA2gIR0ChK1S7oStedX2UKGgGR7/gb9qDbrTqaAdLBGgIR0ChKxCzTnaGdX2UKGgGR7/QAe7tiQT3aAdLA2gIR0ChK6Zh8YygdX2UKGgGR7/c08eS0Sh8aAdLBGgIR0ChK/MUqQRxdX2UKGgGR7+68IzFdcB2aAdLAmgIR0ChKxgsTWXkdX2UKGgGR7/gB8QZn+Q2aAdLBGgIR0ChK2YFRpDedX2UKGgGR7/M8kD6nBLxaAdLA2gIR0ChK7GPHT7VdX2UKGgGR7+ZdfLLZBcBaAdLAWgIR0ChK2oWgvlEdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e453d3d238c1e02331c3d69f4768590e0481f97d9b5223af9b5a453a06dedfa9
3
+ size 48456
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:510b9c9edf76ed22576edf51f279768ce254eae8d0b2661935cfab8e36156f00
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e7ca0bb1630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7ca0b9f000>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742481256458945776, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAj5auv5JMtz7GZRw/mJWDPovdC7sRkN4+mJWDPovdC7sRkN4+cKiov70Mqr8uPC0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjmW5v3XJkD4jIqI/7CBnv72WET+tlxA9SAifP2H+w7/G7hi+7wf+vkfbpb9+2I0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACPlq6/kky3PsZlHD/h1lC/38KgvQYsvD+YlYM+i90LuxGQ3j5fm+o+jqr6uZaxwT6YlYM+i90LuxGQ3j5fm+o+jqr6uZaxwT5wqKi/vQyqvy48LT+LyEC/0MyHv4dq1T+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3639697 0.35800606 0.61092794]\n [ 0.25700068 -0.00213418 0.4346929 ]\n [ 0.25700068 -0.00213418 0.4346929 ]\n [-1.3176403 -1.3285137 0.6766995 ]]", "desired_goal": "[[-1.4484117 0.282787 1.2666668 ]\n [-0.9028461 0.56870633 0.0353009 ]\n [ 1.2424402 -1.5312005 -0.14934835]\n [-0.49615428 -1.2957543 1.1081693 ]]", "observation": "[[-1.3639697e+00 3.5800606e-01 6.1092794e-01 -8.1577879e-01\n -7.8496687e-02 1.4700935e+00]\n [ 2.5700068e-01 -2.1341767e-03 4.3469289e-01 4.5821664e-01\n -4.7810789e-04 3.7830800e-01]\n [ 2.5700068e-01 -2.1341767e-03 4.3469289e-01 4.5821664e-01\n -4.7810789e-04 3.7830800e-01]\n [-1.3176403e+00 -1.3285137e+00 6.7669952e-01 -7.5306004e-01\n -1.0609379e+00 1.6673135e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAhiMvTwDnD0D3Ig+K/AKvkkhmD0D4Io+YOkWvuCRB74BZQY+n1+TPR+LHb1hLRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06840517 0.07617804 0.26730356]\n [-0.1356818 0.07428224 0.27124032]\n [-0.14737463 -0.1323924 0.13124467]\n [ 0.07195973 -0.03846275 0.14958717]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RbD/EOy3WMAWyUSwOMAXSUR0ChKnay0KJEdX2UKGgGR7/V35N47ihnaAdLBGgIR0ChKjm+TNdJdX2UKGgGR7/Syhi9Zid8aAdLBGgIR0ChKe/5LytndX2UKGgGR7/HVhkRSP2gaAdLA2gIR0ChKoYI8hcJdX2UKGgGR7/XCKJl8PWhaAdLBGgIR0ChKtOq//NrdX2UKGgGR7+6+vhZQpF1aAdLAmgIR0ChKkNHYpUhdX2UKGgGR7+xIvrWy1NQaAdLAmgIR0ChKflvqC6IdX2UKGgGR7/I0aZQYUFjaAdLA2gIR0ChKpYwqRU4dX2UKGgGR7/BP557gKnfaAdLAmgIR0ChKk6rNnoQdX2UKGgGR7+2z8gpz90jaAdLAmgIR0ChKgUxubZwdX2UKGgGR7/DGEPDpC8faAdLA2gIR0ChKuSbpeNUdX2UKGgGR7/IP1ct5D7ZaAdLA2gIR0ChKl0wSJ0odX2UKGgGR7/CXWvr4WUKaAdLA2gIR0ChKhOOCGvfdX2UKGgGR7/cwsGxD9fkaAdLBGgIR0ChKqmvGIbgdX2UKGgGR7/de3QUpNKzaAdLBGgIR0ChKvnzg/C7dX2UKGgGR7+zpQk5ZKWcaAdLAmgIR0ChKh/f4yoGdX2UKGgGR7+oWJrLyMDPaAdLAWgIR0ChKv8D8tPIdX2UKGgGR7/PbSqlxffGaAdLA2gIR0ChKrsGorFwdX2UKGgGR7/CMa0hNdqtaAdLAmgIR0ChKinTiKixdX2UKGgGR7+j7qIJqqOtaAdLAWgIR0ChKsABT4tZdX2UKGgGR7/ZV0Lc9GI9aAdLBWgIR0ChKnjf3vhIdX2UKGgGR7/NoSL61stTaAdLA2gIR0ChKw2HLzPKdX2UKGgGR7+9FUhmoR7JaAdLAmgIR0ChKspy6tkndX2UKGgGR7/Fsw+MZP2xaAdLAmgIR0ChKxdPLxI8dX2UKGgGR7/KrnTy8SPEaAdLA2gIR0ChKobHp8nedX2UKGgGR7/cnyd4FA3UaAdLBGgIR0ChKjzfaYeDdX2UKGgGR7/cK/mDDjzaaAdLBGgIR0ChKtl8G9pRdX2UKGgGR7/PCj1wo9cKaAdLA2gIR0ChKpHogV45dX2UKGgGR7/bN8ma6STyaAdLBGgIR0ChKyj4HoovdX2UKGgGR7/cK15Sm65HaAdLBGgIR0ChKk4zzmOmdX2UKGgGR7/RVEd/8VHnaAdLA2gIR0ChKuctf5UMdX2UKGgGR7/X1Fpfx+a0aAdLBGgIR0ChKqN0eU6gdX2UKGgGR7/UszEaVD8caAdLA2gIR0ChKlmSIP9UdX2UKGgGR7/Vm+j/MnqnaAdLBGgIR0ChKzhMi8nNdX2UKGgGR7/Ed+5OJtSAaAdLAmgIR0ChKq1SwW30dX2UKGgGR7/BwiJO32EkaAdLAmgIR0ChKmNrTH81dX2UKGgGR7/eXkHUtqYaaAdLBGgIR0ChKvkG7jDLdX2UKGgGR7/K6zVtoBaLaAdLA2gIR0ChK0XrleWwdX2UKGgGR7/CCaJAMUh3aAdLAmgIR0ChKrU+cH4XdX2UKGgGR7/WRXOnl4keaAdLA2gIR0ChKm8BdUsGdX2UKGgGR7/IwoLG7z06aAdLA2gIR0ChK1NXgccVdX2UKGgGR7/ZqIrOJLuhaAdLBGgIR0ChKwq8DjiodX2UKGgGR7/OFAVwgkkbaAdLA2gIR0ChKsL+xW1ddX2UKGgGR7/TN+9alk6LaAdLA2gIR0ChKnxwQ176dX2UKGgGR7+4D7qIJqqPaAdLAmgIR0ChKxIDoyKvdX2UKGgGR7+YE4ecQRPHaAdLAWgIR0ChKxWiUPhAdX2UKGgGR7/QPBzmwJPZaAdLA2gIR0ChKs4jKPn0dX2UKGgGR7/fPdEb5uZUaAdLBGgIR0ChK2LiEQGwdX2UKGgGR7/M2ycCo0hvaAdLA2gIR0ChKogAyVOcdX2UKGgGR7/C8GLUCq6waAdLAmgIR0ChKtgb6xgRdX2UKGgGR7/AiMYMvyskaAdLAmgIR0ChK2zJQtSRdX2UKGgGR7/HEroW56MSaAdLA2gIR0ChKyPtlZoxdX2UKGgGR7/AQYk3S8aoaAdLAmgIR0ChKpIXTEzgdX2UKGgGR7+3xLCemNzbaAdLAmgIR0ChKyr/S6UadX2UKGgGR7/SUoa1kUblaAdLA2gIR0ChKuN6HCXQdX2UKGgGR7+4ir1dxAB1aAdLAmgIR0ChKpl6AvtddX2UKGgGR7/TztkWhysCaAdLA2gIR0ChK3hCtzS1dX2UKGgGR7+7IuGsV+I/aAdLAmgIR0ChKzT+vQnhdX2UKGgGR7/E+LWI42jxaAdLAmgIR0ChKu1KPGQ0dX2UKGgGR7/CT5ftx+8XaAdLAmgIR0ChKqNga3qidX2UKGgGR7/ZjoIOYplSaAdLBGgIR0ChK4kleF+NdX2UKGgGR7/IoUi6g/TtaAdLA2gIR0ChK0AtnPE9dX2UKGgGR7/PASFoL5RCaAdLA2gIR0ChKvhxPwd9dX2UKGgGR7/N+85CF9KFaAdLA2gIR0ChKq8qWkaddX2UKGgGR7/Lr9ETg2qDaAdLA2gIR0ChK5gPEsJ6dX2UKGgGR7/WBwdbPhQ4aAdLA2gIR0ChK09ZA6dUdX2UKGgGR7/OzMzMzMzNaAdLA2gIR0ChKwedK/VRdX2UKGgGR7/LY6GQCCBgaAdLA2gIR0ChKr3K0UoKdX2UKGgGR7+/lcQiA2AHaAdLAmgIR0ChK1cm8dxRdX2UKGgGR7++5CngpBomaAdLAmgIR0ChKw9sabWmdX2UKGgGR7/SN34bjtG/aAdLA2gIR0ChK6QQtjCpdX2UKGgGR7+4yWRigCfZaAdLAmgIR0ChK2FBY3efdX2UKGgGR7/X9kz41xbTaAdLBGgIR0ChKs+uNgjRdX2UKGgGR7/BXsgMc6vJaAdLAmgIR0ChK65zHS4OdX2UKGgGR7/RH5aePJaJaAdLA2gIR0ChKx3NC7btdX2UKGgGR7+/UkOZssQNaAdLAmgIR0ChKtdpZfUndX2UKGgGR7/XlrM1TBInaAdLA2gIR0ChK2z4+KTCdX2UKGgGR7/N7k4m1IAfaAdLA2gIR0ChKykGZ/kOdX2UKGgGR7/E0CzTnaFmaAdLAmgIR0ChKt8kt29tdX2UKGgGR7/LmRvFWGRFaAdLBGgIR0ChK8BDw6QvdX2UKGgGR7/A7g88s+V1aAdLAmgIR0ChK3dk8RthdX2UKGgGR7+7dTHbRF7VaAdLAmgIR0ChKum0eEIxdX2UKGgGR7+5oUSIxgy/aAdLAmgIR0ChK8h4lhPTdX2UKGgGR7/E0Y0l7dBTaAdLAmgIR0ChK3+Bg/kedX2UKGgGR7/SDhtLteD4aAdLA2gIR0ChKzfYJ3PidX2UKGgGR7/Ja/yoXKr8aAdLA2gIR0ChKvVjZteldX2UKGgGR7/OeqaPS2H+aAdLA2gIR0ChK41f/m1ZdX2UKGgGR7/V+WGATZg5aAdLBGgIR0ChK9ovalDXdX2UKGgGR7/XxbSqlxffaAdLBGgIR0ChK0lirksCdX2UKGgGR7+5pFkQPI4maAdLAmgIR0ChKv+QEIPcdX2UKGgGR7+v6KtPpIMCaAdLAmgIR0ChK+HZTQ3QdX2UKGgGR7/I0j1PFefJaAdLA2gIR0ChK5jwhGH6dX2UKGgGR7/H63y7PIGRaAdLA2gIR0ChK1S7oStedX2UKGgGR7/gb9qDbrTqaAdLBGgIR0ChKxCzTnaGdX2UKGgGR7/QAe7tiQT3aAdLA2gIR0ChK6Zh8YygdX2UKGgGR7/c08eS0Sh8aAdLBGgIR0ChK/MUqQRxdX2UKGgGR7+68IzFdcB2aAdLAmgIR0ChKxgsTWXkdX2UKGgGR7/gB8QZn+Q2aAdLBGgIR0ChK2YFRpDedX2UKGgGR7/M8kD6nBLxaAdLA2gIR0ChK7GPHT7VdX2UKGgGR7+ZdfLLZBcBaAdLAWgIR0ChK2oWgvlEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6da451a4976e4fbd27ee8d95c3d05df9f4dbf9c666bd0709dc9416bcd4d6fd
3
+ size 688470
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2173659984022379, "std_reward": 0.11043867892026486, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-20T15:11:26.894688"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3fd8e3486f22dd2b053a80b59f3f591be954db1fe97b74f56b3882bf2327fe0
3
+ size 2623