--- license: mit pipeline_tag: image-classification library_name: transformers tags: - PyTorch - Mamba - SSM --- # VMamba: Visual State Space Model VMamba is a bidirectional state-space model finetuned on Imagenet dataset. It was introduced in the paper: [VMamba: Visual State Space Model](https://arxiv.org/pdf/2401.10166) and was first released in [this repo](https://github.com/MzeroMiko/VMamba/tree/main). Disclaimer: This is not the official implementation, please refer to the [official repo](https://github.com/MzeroMiko/VMamba/tree/main). ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from PIL import Image import torchvision.transforms as T from transformers import AutoConfig, AutoModelForImageClassification config = AutoConfig.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) vmamba_model = AutoModelForImageClassification.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) preprocess = T.Compose([ T.Resize(224, interpolation=Image.BICUBIC), T.CenterCrop(224), T.ToTensor(), T.Normalize( mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250] )]) input_image = Image.open('/data/sls/scratch/sbhati/data/Imagenet/train/n02009912/n02009912_16160.JPEG') input_image = preprocess(input_image) with torch.no_grad(): logits = vmamba_model(input_image.unsqueeze(0)).logits predicted_label = vmamba_model.config.id2label[logits.argmax().item()] predicted_label 'crane' ``` ## Citation ```bibtex @article{liu2024vmamba, title={VMamba: Visual State Space Model}, author={Liu, Yue and Tian, Yunjie and Zhao, Yuzhong and Yu, Hongtian and Xie, Lingxi and Wang, Yaowei and Ye, Qixiang and Liu, Yunfan}, journal={arXiv preprint arXiv:2401.10166}, year={2024} } ```