Muennighoff commited on
Commit
3d8663b
·
verified ·
1 Parent(s): e01d71d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -47
README.md CHANGED
@@ -9,50 +9,4 @@ tags:
9
  licence: license
10
  ---
11
 
12
- # Model Card for Qwen2.5-3B-Instruct-20250310_174256
13
-
14
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
-
17
- ## Quick start
18
-
19
- ```python
20
- from transformers import pipeline
21
-
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="qfq/Qwen2.5-3B-Instruct-20250310_174256", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
-
28
- ## Training procedure
29
-
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hashimoto-group/o1/runs/stcs4jwi)
31
-
32
-
33
- This model was trained with SFT.
34
-
35
- ### Framework versions
36
-
37
- - TRL: 0.15.2
38
- - Transformers: 4.49.0
39
- - Pytorch: 2.3.1
40
- - Datasets: 3.0.1
41
- - Tokenizers: 0.21.0
42
-
43
- ## Citations
44
-
45
-
46
-
47
- Cite TRL as:
48
-
49
- ```bibtex
50
- @misc{vonwerra2022trl,
51
- title = {{TRL: Transformer Reinforcement Learning}},
52
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
- year = 2020,
54
- journal = {GitHub repository},
55
- publisher = {GitHub},
56
- howpublished = {\url{https://github.com/huggingface/trl}}
57
- }
58
- ```
 
9
  licence: license
10
  ---
11
 
12
+ Qwen2.5-3B-Instruct finetuned on s1K-1.1. Not evaluated. We recommend using s1.1-32B.