|
import streamlit as st |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
id_to_cat = {0: 'High Energy Physics - Theory', |
|
1: 'Category Theory', |
|
2: 'Methodology', |
|
3: 'Formal Languages and Automata Theory', |
|
4: 'Robotics', |
|
5: 'Fluid Dynamics', |
|
6: 'Spectral Theory', |
|
7: 'Econometrics', |
|
8: 'Programming Languages', |
|
9: 'Discrete Mathematics', |
|
10: 'Networking and Internet Architecture', |
|
11: 'Quantum Gases', |
|
12: 'Data Structures and Algorithms', |
|
13: 'Databases', |
|
14: 'Earth and Planetary Astrophysics', |
|
15: 'Optimization and Control', |
|
16: 'Biomolecules', |
|
17: 'Cryptography and Security', |
|
18: 'Geometric Topology', |
|
19: 'Other Condensed Matter', |
|
20: 'Statistical Mechanics', |
|
21: 'Analysis of PDEs', |
|
22: 'Quantitative Methods', |
|
23: 'Artificial Intelligence', |
|
24: 'Classical Analysis and ODEs', |
|
25: 'Machine Learning', |
|
26: 'Combinatorics', |
|
27: 'Pattern Formation and Solitons', |
|
28: 'Solar and Stellar Astrophysics', |
|
29: 'Audio and Speech Processing', |
|
30: 'Computer Science and Game Theory', |
|
31: 'Mesoscale and Nanoscale Physics', |
|
32: 'Instrumentation and Methods for Astrophysics', |
|
33: 'Logic', |
|
34: 'General Relativity and Quantum Cosmology', |
|
35: 'Differential Geometry', |
|
36: 'Graphics', |
|
37: 'Logic in Computer Science', |
|
38: 'Materials Science', |
|
39: 'Computational Finance', |
|
40: 'General Literature', |
|
41: 'Tissues and Organs', |
|
42: 'Digital Libraries', |
|
43: 'Sound', |
|
44: 'Computational Engineering, Finance, and Science', |
|
45: 'Biological Physics', |
|
46: 'Algebraic Geometry', |
|
47: 'Genomics', |
|
48: 'Algebraic Topology', |
|
49: 'Mathematical Software', |
|
50: 'Cosmology and Nongalactic Astrophysics', |
|
51: 'Probability', |
|
52: 'Data Analysis, Statistics and Probability', |
|
53: 'Classical Physics', |
|
54: 'Image and Video Processing', |
|
55: 'Neural and Evolutionary Computing', |
|
56: 'History and Philosophy of Physics', |
|
57: 'Astrophysics of Galaxies', |
|
58: 'Molecular Networks', |
|
59: 'Cellular Automata and Lattice Gases', |
|
60: 'Optics', |
|
61: 'General Finance', |
|
62: 'Mathematical Physics', |
|
63: 'Multimedia', |
|
64: 'Computational Physics', |
|
65: 'Performance', |
|
66: 'History and Overview', |
|
67: 'Instrumentation and Detectors', |
|
68: 'Computer Vision and Pattern Recognition', |
|
69: 'Medical Physics', |
|
70: 'Quantum Physics', |
|
71: 'Number Theory', |
|
72: 'Social and Information Networks', |
|
73: 'Populations and Evolution', |
|
74: 'High Energy Physics - Lattice', |
|
75: 'Pricing of Securities', |
|
76: 'Nuclear Theory', |
|
77: 'Human-Computer Interaction', |
|
78: 'Representation Theory', |
|
79: 'Geophysics', |
|
80: 'Operator Algebras', |
|
81: 'Computational Complexity', |
|
82: 'Distributed, Parallel, and Cluster Computing', |
|
83: 'Software Engineering', |
|
84: 'Computational Geometry', |
|
85: 'Cell Behavior', |
|
86: 'Quantum Algebra', |
|
87: 'Hardware Architecture', |
|
88: 'Strongly Correlated Electrons', |
|
89: 'Portfolio Management', |
|
90: 'General Topology', |
|
91: 'Statistical Finance', |
|
92: 'Computation and Language', |
|
93: 'Atmospheric and Oceanic Physics', |
|
94: 'Multiagent Systems', |
|
95: 'Rings and Algebras', |
|
96: 'Nuclear Experiment', |
|
97: 'Space Physics', |
|
98: 'Risk Management', |
|
99: 'General Mathematics', |
|
100: 'Other Statistics', |
|
101: 'Symbolic Computation', |
|
102: 'High Energy Physics - Phenomenology', |
|
103: 'Popular Physics', |
|
104: 'Functional Analysis', |
|
105: 'Economics', |
|
106: 'Computation', |
|
107: 'Operating Systems', |
|
108: 'Complex Variables', |
|
109: 'Applications', |
|
110: 'Information Theory', |
|
111: 'Physics and Society', |
|
112: 'Other Computer Science', |
|
113: 'Metric Geometry', |
|
114: 'Signal Processing', |
|
115: 'Information Retrieval', |
|
116: 'Numerical Analysis', |
|
117: 'Chemical Physics', |
|
118: 'Trading and Market Microstructure', |
|
119: 'Soft Condensed Matter', |
|
120: 'Computers and Society', |
|
121: 'General Physics', |
|
122: 'Superconductivity', |
|
123: 'Statistics Theory', |
|
124: 'Emerging Technologies', |
|
125: 'High Energy Astrophysical Phenomena', |
|
126: 'Other Quantitative Biology', |
|
127: 'High Energy Physics - Experiment', |
|
128: 'Commutative Algebra', |
|
129: 'Applied Physics', |
|
130: 'Dynamical Systems', |
|
131: 'Adaptation and Self-Organizing Systems', |
|
132: 'Neurons and Cognition', |
|
133: 'Subcellular Processes', |
|
134: 'Chaotic Dynamics', |
|
135: 'Group Theory', |
|
136: 'Systems and Control', |
|
137: 'Disordered Systems and Neural Networks' |
|
} |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-cased') |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
'checkpoint', |
|
num_labels=len(id_to_cat), |
|
problem_type="multi_label_classification" |
|
) |
|
return model, tokenizer |
|
|
|
try: |
|
model, tokenizer = load_model() |
|
except OSError as e: |
|
st.error(f"Ошибка при загрузке модели: {e}") |
|
st.stop() |
|
|
|
def classify_text(title, description): |
|
text = f"{title.strip()} {description.strip()}" |
|
try: |
|
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=len(id_to_cat)) |
|
results = classifier(text) |
|
except Exception as e: |
|
st.error(f"Ошибка при классификации текста: {e}") |
|
return [] |
|
|
|
res = [ |
|
(id_to_cat[int(entry['label'].split('_')[1])], entry['score']) |
|
for entry in results[0] |
|
] |
|
total = sum(score for _, score in res) |
|
return [(label, score / total) for label, score in res] |
|
|
|
st.title("🔬 Классификация англоязычных научных статей") |
|
st.markdown("Введите заголовок и краткое описание научной статьи, чтобы определить её тематические категории.") |
|
|
|
title = st.text_input("📝 Заголовок статьи", placeholder="Например: Deep Learning for Image Recognition") |
|
description = st.text_area("🧾 Краткое описание статьи", height=150, placeholder="Кратко опишите содержание статьи...") |
|
top_percent = st.text_input("📊 Порог суммарной вероятности (например, 95 или 0.95 для top 95%)", value="95") |
|
|
|
if st.button("🚀 Классифицировать"): |
|
if not title and not description: |
|
st.warning("Пожалуйста, введите заголовок или описание статьи.") |
|
else: |
|
try: |
|
t = float(top_percent) |
|
if t > 1: |
|
t = t / 100 |
|
if not (0 < t <= 1): |
|
raise ValueError() |
|
except ValueError: |
|
st.warning("Некорректное значение для порога вероятности. Используем значение по умолчанию: 95%.") |
|
t = 0.95 |
|
|
|
with st.spinner("🔍 Классификация..."): |
|
results = classify_text(title, description) |
|
|
|
if results: |
|
cumulative_prob = 0.0 |
|
st.subheader(f"📚 Топ категорий (до {int(t*100)}% совокупной вероятности):") |
|
for label, score in results: |
|
st.write(f"- **{label}**: {score*100:.2f}%") |
|
cumulative_prob += score |
|
if cumulative_prob >= t: |
|
break |
|
else: |
|
st.info("Не удалось получить результаты классификации.") |
|
elif title or description: |
|
st.warning("Нажмите кнопку 'Классифицировать', чтобы получить результат.") |
|
|