vicuna-clip / app.py
ford442's picture
Update app.py
06fb866 verified
raw
history blame
4.38 kB
import spaces
import torch
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
import soundfile as sf
import numpy as np
from bark import SAMPLE_RATE, generate_audio, preload_models
import torch.multiprocessing as mp # Import multiprocessing
import os
# Load Whisper and Vicuna models (as before)
ASR_MODEL_NAME = "openai/whisper-medium.en"
asr_pipe = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
chunk_length_s=30,
device='cuda',
)
all_special_ids = asr_pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def _preload_and_load_models():
global vicuna_tokenizer, vicuna_model
# Load Vicuna (as before)
VICUNA_MODEL_NAME = "EleutherAI/gpt-neo-2.7B" # Or another model
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
vicuna_model = AutoModelForCausalLM.from_pretrained(
VICUNA_MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto", # or.to('cuda')
).to('cuda') # Explicitly move to CUDA after loading
# Bark model loading (modified)
from bark.models import (
BARK_V0_MODEL_NAMES,
BARK_V0_SPEAKER_EMBEDDING_MODEL_NAME,
) # Import model names
from bark.generation import preload_models as _preload_models # rename the function
_preload_models(BARK_V0_MODEL_NAMES + [BARK_V0_SPEAKER_EMBEDDING_MODEL_NAME]) # load models
if __name__ == "__main__":
if "HF_SPACE_ID" in os.environ:
mp.set_start_method('spawn', force=True)
p = mp.Process(target=_preload_and_load_models)
p.start()
p.join()
else:
_preload_and_load_models()
@spaces.GPU(required=True)
def process_audio(microphone, state, task="transcribe"):
if microphone is None:
return state, state, None
asr_pipe.model.config.forced_decoder_ids = [
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
]
text = asr_pipe(microphone)["text"]
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
You answer questions clearly and simply, using age-appropriate language.
You are also a little bit silly and like to make jokes."""
prompt = f"{system_prompt}\nUser: {text}"
with torch.no_grad():
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=192)
vicuna_response = vicuna_tokenizer.decode(vicuna_output, skip_special_tokens=True)
vicuna_response = vicuna_response.replace(prompt, "").strip()
updated_state = state + "\n" + vicuna_response
try:
# Use Bark's generate_audio function directly
audio_arr = generate_audio(vicuna_response) #, history_prompt=None - if needed
# Scale and convert audio (as before)
audio_arr = (audio_arr * 32767).astype(np.int16)
# Save audio for debugging
sf.write('generated_audio.wav', audio_arr, SAMPLE_RATE)
audio_output = (SAMPLE_RATE, audio_arr) # Use the correct SAMPLE_RATE
except Exception as e:
print(f"Error in speech synthesis: {e}")
audio_output = None
return updated_state, updated_state, audio_output
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
with gr.Tab("Transcribe & Synthesize"):
mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here")
transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response")
audio_output = gr.Audio(label="Synthesized Speech", type="numpy")
transcription_state = gr.State(value="")
mic_input.change(
fn=process_audio, # Call the combined function
inputs=[mic_input, transcription_state],
outputs=[transcription_output, transcription_state, audio_output]
)
demo.launch(share=False)