vicuna-clip / app.py
ford442's picture
Update app.py
1fb301f verified
raw
history blame
4.19 kB
import spaces
import torch
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
import soundfile as sf
import numpy as np
import requests
import os
ASR_MODEL_NAME = "openai/whisper-medium.en"
asr_pipe = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
chunk_length_s=30,
device='cuda',
)
all_special_ids = asr_pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def _preload_and_load_models():
global vicuna_tokenizer, vicuna_model
VICUNA_MODEL_NAME = "EleutherAI/gpt-neo-2.7B" # Or another model
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
vicuna_model = AutoModelForCausalLM.from_pretrained(
VICUNA_MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto", # or.to('cuda')
) #.to('cuda') # Explicitly move to CUDA after loading
@spaces.GPU(required=True)
def process_audio(microphone, state, task="transcribe"):
if microphone is None:
return state, state, None
asr_pipe.model.config.forced_decoder_ids = [
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
]
text = asr_pipe(microphone)["text"]
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
You answer questions clearly and simply, using age-appropriate language.
You are also a little bit silly and like to make jokes."""
prompt = f"{system_prompt}\nUser: {text}"
with torch.no_grad():
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=192)
vicuna_response = vicuna_tokenizer.decode(vicuna_output, skip_special_tokens=True)
vicuna_response = vicuna_response.replace(prompt, "").strip()
updated_state = state + "\n" + vicuna_response
try:
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
payloads = {'inputs': vicuna_response} # Use Vicuna's response for TTS
response = requests.post(API_URL, headers=headers, json=payloads)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
audio_data = response.content
# Convert bytes to numpy array (adjust sampling rate if needed)
audio_arr = np.frombuffer(audio_data, dtype=np.int16) # Assumes 16-bit PCM
SAMPLE_RATE = 22050 # Common for this model; you might need to check the actual value
audio_arr = audio_arr.reshape(-1, 1).astype(np.float32) / np.iinfo(np.int16).max # Normalize
audio_arr = audio_arr.flatten() # Make it 1D
audio_output = (SAMPLE_RATE, audio_arr)
#sf.write('generated_audio.wav', audio_arr, SAMPLE_RATE)
except requests.exceptions.RequestException as e:
print(f"Error in Hugging Face API request: {e}")
audio_output = None
except Exception as e:
print(f"Error in speech synthesis: {e}")
audio_output = None
return updated_state, updated_state, audio_output
with gr.Blocks(title="Whisper, Vicuna, & TTS Demo") as demo: # Updated title
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Hugging Face TTS") # Updated Markdown
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
with gr.Tab("Transcribe & Synthesize"):
mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here")
transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response")
audio_output = gr.Audio(label="Synthesized Speech", type="numpy") # Important: type="numpy"
transcription_state = gr.State(value="")
mic_input.change(
fn=process_audio, # Call the combined function
inputs=[mic_input, transcription_state],
outputs=[transcription_output, transcription_state, audio_output]
)
demo.launch(share=False)