vicuna-clip / app.py
ford442's picture
Update app.py
f055d9c verified
raw
history blame
3.3 kB
import spaces
import torch
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoProcessor
import soundfile as sf
import numpy as np
import IPython.display as ipd
import os
ASR_MODEL_NAME = "openai/whisper-large-v2"
asr_pipe = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
chunk_length_s=30,
device='cuda',
)
all_special_ids = asr_pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
TTS_MODEL_NAME = "suno/bark-small"
tts_processor = AutoProcessor.from_pretrained(TTS_MODEL_NAME)
tts_model = AutoModel.from_pretrained(TTS_MODEL_NAME).to('cuda')
VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5"
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
vicuna_model = AutoModelForCausalLM.from_pretrained(
VICUNA_MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
)
@spaces.GPU(required=True)
def process_audio(microphone, state, task="transcribe"):
if microphone is None:
return state, state, None
asr_pipe.model.config.forced_decoder_ids = [
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
]
text = asr_pipe(microphone)["text"]
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
You answer questions clearly and simply, using age-appropriate language.
You are also a little bit silly and like to make jokes."""
prompt = f"{system_prompt}\nUser: {text}"
with torch.no_grad():
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=128)
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
vicuna_response = vicuna_response.replace(prompt, "").strip()
updated_state = state + "\n" + vicuna_response
try:
with torch.no_grad():
inputs = tts_processor(vicuna_response, return_tensors="pt").to('cuda')
output = tts_model.generate(**inputs, do_sample=True)
waveform_np = output[0].cpu().numpy()
audio_output = (tts_model.generation_config.sample_rate, waveform_np)
except Exception as e:
print(f"Error in speech synthesis: {e}")
audio_output = None
return updated_state, updated_state, audio_output
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
with gr.Tab("Transcribe & Synthesize"):
mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here")
transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response")
audio_output = gr.Audio(label="Synthesized Speech", type="numpy")
transcription_state = gr.State(value="")
mic_input.change(
fn=process_audio, # Call the combined function
inputs=[mic_input, transcription_state],
outputs=[transcription_output, transcription_state, audio_output]
)
demo.launch(share=False)