Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,29 @@
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
import soundfile as sf
|
5 |
import numpy as np
|
6 |
from espnet2.bin.tts_inference import Text2Speech
|
7 |
-
import IPython.display as ipd
|
8 |
import os
|
9 |
from huggingface_hub import snapshot_download
|
10 |
|
11 |
-
#
|
12 |
-
ASR_MODEL_NAME = "openai/whisper-large-v2"
|
13 |
-
asr_device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
asr_pipe = pipeline(
|
15 |
-
task="automatic-speech-recognition",
|
16 |
-
model=ASR_MODEL_NAME,
|
17 |
-
chunk_length_s=30,
|
18 |
-
device=asr_device,
|
19 |
-
)
|
20 |
-
all_special_ids = asr_pipe.tokenizer.all_special_ids
|
21 |
-
transcribe_token_id = all_special_ids[-5]
|
22 |
-
translate_token_id = all_special_ids[-6]
|
23 |
|
24 |
# --- VITS (TTS) Setup ---
|
25 |
TTS_MODEL_NAME = "espnet/kan_bayashi_ljspeech_vits"
|
26 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
|
28 |
-
# Download the ESPnet model files
|
29 |
-
model_dir = "vits_model"
|
30 |
if not os.path.exists(model_dir):
|
31 |
os.makedirs(model_dir)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
except Exception as e:
|
36 |
-
print(f"Error downloading model: {e}")
|
37 |
-
raise
|
38 |
|
39 |
# Construct *absolute* paths to the config and model files.
|
40 |
-
# This is the KEY change.
|
41 |
config_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/config.yaml")
|
42 |
model_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth")
|
43 |
|
|
|
1 |
+
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import soundfile as sf
|
6 |
import numpy as np
|
7 |
from espnet2.bin.tts_inference import Text2Speech
|
8 |
+
import IPython.display as ipd
|
9 |
import os
|
10 |
from huggingface_hub import snapshot_download
|
11 |
|
12 |
+
# ... (Whisper and Vicuna setup remain the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# --- VITS (TTS) Setup ---
|
15 |
TTS_MODEL_NAME = "espnet/kan_bayashi_ljspeech_vits"
|
16 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
+
# Download the ESPnet model files and get the download path
|
19 |
+
model_dir = "vits_model"
|
20 |
if not os.path.exists(model_dir):
|
21 |
os.makedirs(model_dir)
|
22 |
+
|
23 |
+
download_path = snapshot_download(repo_id=TTS_MODEL_NAME, local_dir=model_dir, local_dir_use_symlinks=False)
|
24 |
+
print(f"Downloaded ESPnet model to: {download_path}") # Print the path!
|
|
|
|
|
|
|
25 |
|
26 |
# Construct *absolute* paths to the config and model files.
|
|
|
27 |
config_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/config.yaml")
|
28 |
model_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth")
|
29 |
|