Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoProcessor
|
@@ -7,60 +7,65 @@ import numpy as np
|
|
7 |
import IPython.display as ipd
|
8 |
import os
|
9 |
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
asr_pipe = pipeline(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
|
19 |
-
all_special_ids = asr_pipe.tokenizer.all_special_ids
|
20 |
-
transcribe_token_id = all_special_ids[-5]
|
21 |
-
translate_token_id = all_special_ids[-6]
|
22 |
|
23 |
-
TTS_MODEL_NAME = "suno/bark-small"
|
24 |
-
tts_processor = AutoProcessor.from_pretrained(TTS_MODEL_NAME)
|
25 |
-
tts_model = AutoModel.from_pretrained(TTS_MODEL_NAME).to('cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5"
|
28 |
-
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
|
29 |
-
vicuna_model = AutoModelForCausalLM.from_pretrained(
|
30 |
-
VICUNA_MODEL_NAME,
|
31 |
-
torch_dtype=torch.float16, # Use float16 for efficiency (if GPU supports it)
|
32 |
-
device_map="auto", # Let transformers handle device placement
|
33 |
-
) #.to('cuda')
|
34 |
|
35 |
-
def transcribe_audio(microphone, state, task="transcribe"):
|
36 |
if microphone is None:
|
37 |
-
return state, state
|
|
|
38 |
asr_pipe.model.config.forced_decoder_ids = [
|
39 |
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
|
40 |
]
|
41 |
text = asr_pipe(microphone)["text"]
|
42 |
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
|
43 |
-
|
44 |
-
|
45 |
prompt = f"{system_prompt}\nUser: {text}"
|
46 |
with torch.no_grad():
|
47 |
-
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
|
48 |
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=128)
|
49 |
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
|
50 |
vicuna_response = vicuna_response.replace(prompt, "").strip()
|
51 |
updated_state = state + "\n" + vicuna_response
|
52 |
-
return updated_state, updated_state
|
53 |
|
54 |
-
def synthesize_speech(text):
|
55 |
try:
|
56 |
with torch.no_grad():
|
57 |
-
inputs = tts_processor(
|
58 |
-
output = tts_model.generate(**inputs, do_sample=True)
|
59 |
waveform_np = output[0].cpu().numpy()
|
60 |
-
|
61 |
except Exception as e:
|
62 |
-
print(e)
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
|
66 |
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
|
@@ -71,13 +76,9 @@ with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
|
|
71 |
audio_output = gr.Audio(label="Synthesized Speech", type="numpy")
|
72 |
transcription_state = gr.State(value="")
|
73 |
mic_input.change(
|
74 |
-
fn=
|
75 |
inputs=[mic_input, transcription_state],
|
76 |
-
outputs=[transcription_output, transcription_state]
|
77 |
-
).then(
|
78 |
-
fn=synthesize_speech,
|
79 |
-
inputs=transcription_output,
|
80 |
-
outputs=audio_output
|
81 |
)
|
82 |
|
83 |
demo.launch(share=False)
|
|
|
1 |
+
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoProcessor
|
|
|
7 |
import IPython.display as ipd
|
8 |
import os
|
9 |
|
10 |
+
# Define a decorator for GPU usage in Spaces
|
11 |
+
@spaces.GPU(required=True) # This decorator ensures GPU availability
|
12 |
+
def process_audio(microphone, state, task="transcribe"):
|
13 |
+
ASR_MODEL_NAME = "openai/whisper-large-v2"
|
14 |
|
15 |
+
asr_pipe = pipeline(
|
16 |
+
task="automatic-speech-recognition",
|
17 |
+
model=ASR_MODEL_NAME,
|
18 |
+
chunk_length_s=30,
|
19 |
+
device='cuda', # Explicitly set device to 'cuda' within the function
|
20 |
+
)
|
21 |
|
22 |
+
all_special_ids = asr_pipe.tokenizer.all_special_ids
|
23 |
+
transcribe_token_id = all_special_ids[-5]
|
24 |
+
translate_token_id = all_special_ids[-6]
|
25 |
|
26 |
+
TTS_MODEL_NAME = "suno/bark-small"
|
27 |
+
tts_processor = AutoProcessor.from_pretrained(TTS_MODEL_NAME)
|
28 |
+
tts_model = AutoModel.from_pretrained(TTS_MODEL_NAME).to('cuda') # Explicitly set device to 'cuda' within the function
|
29 |
+
|
30 |
+
VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5"
|
31 |
+
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
|
32 |
+
vicuna_model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
VICUNA_MODEL_NAME,
|
34 |
+
torch_dtype=torch.float16, # Use float16 for efficiency (if GPU supports it)
|
35 |
+
device_map="auto", # Let transformers handle device placement
|
36 |
+
) #.to('cuda')
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
39 |
if microphone is None:
|
40 |
+
return state, state, None # Return None for audio if no microphone input
|
41 |
+
|
42 |
asr_pipe.model.config.forced_decoder_ids = [
|
43 |
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
|
44 |
]
|
45 |
text = asr_pipe(microphone)["text"]
|
46 |
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
|
47 |
+
You answer questions clearly and simply, using age-appropriate language.
|
48 |
+
You are also a little bit silly and like to make jokes."""
|
49 |
prompt = f"{system_prompt}\nUser: {text}"
|
50 |
with torch.no_grad():
|
51 |
+
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda') # Explicitly set device to 'cuda' within the function
|
52 |
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=128)
|
53 |
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
|
54 |
vicuna_response = vicuna_response.replace(prompt, "").strip()
|
55 |
updated_state = state + "\n" + vicuna_response
|
|
|
56 |
|
|
|
57 |
try:
|
58 |
with torch.no_grad():
|
59 |
+
inputs = tts_processor(vicuna_response, return_tensors="pt").to('cuda') # Explicitly set device to 'cuda' within the function
|
60 |
+
output = tts_model.generate(**inputs, do_sample=True) # Bark generate
|
61 |
waveform_np = output[0].cpu().numpy()
|
62 |
+
audio_output = (tts_model.generation_config.sample_rate, waveform_np) # Bark sample rate
|
63 |
except Exception as e:
|
64 |
+
print(f"Error in speech synthesis: {e}")
|
65 |
+
audio_output = None
|
66 |
+
|
67 |
+
return updated_state, updated_state, audio_output
|
68 |
+
|
69 |
|
70 |
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
|
71 |
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
|
|
|
76 |
audio_output = gr.Audio(label="Synthesized Speech", type="numpy")
|
77 |
transcription_state = gr.State(value="")
|
78 |
mic_input.change(
|
79 |
+
fn=process_audio, # Call the combined function
|
80 |
inputs=[mic_input, transcription_state],
|
81 |
+
outputs=[transcription_output, transcription_state, audio_output]
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
|
84 |
demo.launch(share=False)
|