Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
import IPython.display as ipd
|
8 |
import os
|
9 |
|
10 |
-
ASR_MODEL_NAME = "openai/whisper-
|
11 |
asr_pipe = pipeline(
|
12 |
task="automatic-speech-recognition",
|
13 |
model=ASR_MODEL_NAME,
|
@@ -19,7 +19,7 @@ all_special_ids = asr_pipe.tokenizer.all_special_ids
|
|
19 |
transcribe_token_id = all_special_ids[-5]
|
20 |
translate_token_id = all_special_ids[-6]
|
21 |
|
22 |
-
TTS_MODEL_NAME = "suno/bark
|
23 |
tts_processor = AutoProcessor.from_pretrained(TTS_MODEL_NAME)
|
24 |
tts_model = AutoModel.from_pretrained(TTS_MODEL_NAME).to('cuda')
|
25 |
|
@@ -27,7 +27,7 @@ VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5"
|
|
27 |
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
|
28 |
vicuna_model = AutoModelForCausalLM.from_pretrained(
|
29 |
VICUNA_MODEL_NAME,
|
30 |
-
torch_dtype=torch.
|
31 |
device_map="auto",
|
32 |
)
|
33 |
|
@@ -35,7 +35,6 @@ vicuna_model = AutoModelForCausalLM.from_pretrained(
|
|
35 |
def process_audio(microphone, state, task="transcribe"):
|
36 |
if microphone is None:
|
37 |
return state, state, None
|
38 |
-
|
39 |
asr_pipe.model.config.forced_decoder_ids = [
|
40 |
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
|
41 |
]
|
@@ -44,14 +43,12 @@ def process_audio(microphone, state, task="transcribe"):
|
|
44 |
You answer questions clearly and simply, using age-appropriate language.
|
45 |
You are also a little bit silly and like to make jokes."""
|
46 |
prompt = f"{system_prompt}\nUser: {text}"
|
47 |
-
|
48 |
with torch.no_grad():
|
49 |
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
|
50 |
-
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=
|
51 |
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
|
52 |
vicuna_response = vicuna_response.replace(prompt, "").strip()
|
53 |
updated_state = state + "\n" + vicuna_response
|
54 |
-
|
55 |
try:
|
56 |
with torch.no_grad():
|
57 |
inputs = tts_processor(vicuna_response, return_tensors="pt").to('cuda')
|
@@ -61,11 +58,8 @@ def process_audio(microphone, state, task="transcribe"):
|
|
61 |
except Exception as e:
|
62 |
print(f"Error in speech synthesis: {e}")
|
63 |
audio_output = None
|
64 |
-
|
65 |
return updated_state, updated_state, audio_output
|
66 |
|
67 |
-
|
68 |
-
|
69 |
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
|
70 |
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
|
71 |
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
|
|
|
7 |
import IPython.display as ipd
|
8 |
import os
|
9 |
|
10 |
+
ASR_MODEL_NAME = "openai/whisper-medium.en"
|
11 |
asr_pipe = pipeline(
|
12 |
task="automatic-speech-recognition",
|
13 |
model=ASR_MODEL_NAME,
|
|
|
19 |
transcribe_token_id = all_special_ids[-5]
|
20 |
translate_token_id = all_special_ids[-6]
|
21 |
|
22 |
+
TTS_MODEL_NAME = "suno/bark"
|
23 |
tts_processor = AutoProcessor.from_pretrained(TTS_MODEL_NAME)
|
24 |
tts_model = AutoModel.from_pretrained(TTS_MODEL_NAME).to('cuda')
|
25 |
|
|
|
27 |
vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME)
|
28 |
vicuna_model = AutoModelForCausalLM.from_pretrained(
|
29 |
VICUNA_MODEL_NAME,
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
device_map="auto",
|
32 |
)
|
33 |
|
|
|
35 |
def process_audio(microphone, state, task="transcribe"):
|
36 |
if microphone is None:
|
37 |
return state, state, None
|
|
|
38 |
asr_pipe.model.config.forced_decoder_ids = [
|
39 |
[2, transcribe_token_id if task == "transcribe" else translate_token_id]
|
40 |
]
|
|
|
43 |
You answer questions clearly and simply, using age-appropriate language.
|
44 |
You are also a little bit silly and like to make jokes."""
|
45 |
prompt = f"{system_prompt}\nUser: {text}"
|
|
|
46 |
with torch.no_grad():
|
47 |
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
|
48 |
+
vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=256)
|
49 |
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
|
50 |
vicuna_response = vicuna_response.replace(prompt, "").strip()
|
51 |
updated_state = state + "\n" + vicuna_response
|
|
|
52 |
try:
|
53 |
with torch.no_grad():
|
54 |
inputs = tts_processor(vicuna_response, return_tensors="pt").to('cuda')
|
|
|
58 |
except Exception as e:
|
59 |
print(f"Error in speech synthesis: {e}")
|
60 |
audio_output = None
|
|
|
61 |
return updated_state, updated_state, audio_output
|
62 |
|
|
|
|
|
63 |
with gr.Blocks(title="Whisper, Vicuna, & Bark Demo") as demo:
|
64 |
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Bark")
|
65 |
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
|