import spaces import torch import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, LlamaTokenizer, LlamaForCausalLM import numpy as np from espnet2.bin.tts_inference import Text2Speech #import yaml #import os import requests import nltk import scipy.io.wavfile from flask import Flask, request, jsonify app = Flask(__name__) # Create the Flask app instance FIRST try: nltk.data.find('taggers/averaged_perceptron_tagger_eng') except LookupError: nltk.download('averaged_perceptron_tagger_eng') try: nltk.data.find('corpora/cmudict') # Check for cmudict except LookupError: nltk.download('cmudict') ASR_MODEL_NAME = "openai/whisper-medium.en" asr_pipe = pipeline( task="automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=30, device='cuda' if torch.cuda.is_available() else 'cpu', # Use GPU if available ) all_special_ids = asr_pipe.tokenizer.all_special_ids transcribe_token_id = all_special_ids[-5] translate_token_id = all_special_ids[-6] def _preload_and_load_models(): global vicuna_tokenizer, vicuna_model #VICUNA_MODEL_NAME = "EleutherAI/gpt-neo-2.7B" # Or another model #VICUNA_MODEL_NAME = "lmsys/vicuna-13b-v1.5" # Or another model VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5" # Or another model vicuna_tokenizer = LlamaTokenizer.from_pretrained(VICUNA_MODEL_NAME) vicuna_model = LlamaForCausalLM.from_pretrained( VICUNA_MODEL_NAME, torch_dtype=torch.float16, # device_map="auto", # or.to('cuda') ).to('cuda') # Explicitly move to CUDA after loading _preload_and_load_models() tts = Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_vits",device='cuda') @app.route('/api/predict', methods=['POST']) # The API endpoint @spaces.GPU(required=True) def process_audio(microphone, audio_upload, state, answer_mode): # Added audio_upload audio_source = None if microphone: audio_source = microphone asr_pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id ]] text = asr_pipe(audio_source)["text"] elif audio_upload: audio_source = audio_upload rate, data = scipy.io.wavfile.read(audio_source) asr_pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id ]] text = asr_pipe(data)["text"] else: return state, state, None # No audio input system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9). You answer questions clearly and simply, using age-appropriate language. You are also a little bit silly and like to make jokes.""" prompt = f"{system_prompt}\nUser: {text}" with torch.no_grad(): vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda') if answer_mode == 'slow': vicuna_output = vicuna_model.generate( **vicuna_input, max_length = 512, min_new_tokens = 256, do_sample = True ) if answer_mode == 'medium': vicuna_output = vicuna_model.generate( **vicuna_input, max_length = 128, min_new_tokens = 64, do_sample = True ) if answer_mode == 'fast': vicuna_output = vicuna_model.generate( **vicuna_input, max_length = 42, min_new_tokens = 16, do_sample = True ) vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True) vicuna_response = vicuna_response.replace(prompt, "").strip() updated_state = state + "\nUser: " + text + "\n" + "Tutor: " + vicuna_response try: #with torch.no_grad(): output = tts(vicuna_response) wav = output["wav"] sr = tts.fs audio_arr = wav.cpu().numpy() SAMPLE_RATE = sr audio_arr = audio_arr / np.abs(audio_arr).max() audio_output = (SAMPLE_RATE, audio_arr) #sf.write('generated_audio.wav', audio_arr, SAMPLE_RATE) # Removed writing to file except requests.exceptions.RequestException as e: print(f"Error in Hugging Face API request: {e}") audio_output = None except Exception as e: print(f"Error in speech synthesis: {e}") audio_output = None return updated_state, updated_state, audio_output with gr.Blocks(title="Whisper, Vicuna, & TTS Demo") as demo: # Updated title gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Hugging Face TTS") gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!") with gr.Tab("Transcribe & Synthesize"): with gr.Row(): # Added a row for better layout mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here") audio_upload = gr.Audio(sources="upload", type="filepath", label="Or Upload Audio File") # Added upload component transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response") audio_output = gr.Audio(label="Synthesized Speech", type="numpy", autoplay=True) answer_mode = gr.Radio(["fast", "medium", "slow"], value='medium') transcription_state = gr.State(value="") mic_input.change( fn=process_audio, inputs=[mic_input, audio_upload, transcription_state, answer_mode], # Include audio_upload outputs=[transcription_output, transcription_state, audio_output] ) audio_upload.change( # Added change event for upload fn=process_audio, inputs=[mic_input, audio_upload, transcription_state, answer_mode], # Include audio_upload outputs=[transcription_output, transcription_state, audio_output] ) if __name__ == '__main__': app.run(debug=True, port=5000) # Run Flask app demo.launch(share=False)