import spaces import torch import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import soundfile as sf import numpy as np from espnet2.bin.tts_inference import Text2Speech import IPython.display as ipd import os from huggingface_hub import snapshot_download # ... (Whisper and Vicuna setup remain the same) # --- VITS (TTS) Setup --- TTS_MODEL_NAME = "espnet/kan_bayashi_ljspeech_vits" tts_device = "cuda" if torch.cuda.is_available() else "cpu" # Download the ESPnet model files and get the download path model_dir = "vits_model" if not os.path.exists(model_dir): os.makedirs(model_dir) download_path = snapshot_download(repo_id=TTS_MODEL_NAME, local_dir=model_dir, local_dir_use_symlinks=False) print(f"Downloaded ESPnet model to: {download_path}") # Print the path! # Construct *absolute* paths to the config and model files. config_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/config.yaml") model_path = os.path.join(download_path, "exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth") # Load the Text2Speech model using the downloaded files and absolute paths tts_model = Text2Speech(train_config=config_path, model_file=model_path, device=tts_device) # --- Vicuna (LLM) Setup --- VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5" vicuna_device = "cuda" if torch.cuda.is_available() else "cpu" vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME) vicuna_model = AutoModelForCausalLM.from_pretrained( VICUNA_MODEL_NAME, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) # --- ASR Function --- def transcribe_audio(microphone, state, task="transcribe"): if microphone is None: return state, state asr_pipe.model.config.forced_decoder_ids = [ [2, transcribe_token_id if task == "transcribe" else translate_token_id] ] text = asr_pipe(microphone)["text"] # --- VICUNA INTEGRATION --- system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9). You answer questions clearly and simply, using age-appropriate language. You are also a little bit silly and like to make jokes.""" prompt = f"{system_prompt}\nUser: {text}" with torch.no_grad(): vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to(vicuna_device) vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=128) vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True) vicuna_response = vicuna_response.replace(prompt, "").strip() updated_state = state + "\n" + vicuna_response return updated_state, updated_state # --- TTS Function (Using espnet2) --- def synthesize_speech(text): try: with torch.no_grad(): output = tts_model(text) waveform_np = output["wav"].cpu().numpy() return (tts_model.fs, waveform_np) except Exception as e: print(e) return (None, None) # --- Gradio Interface --- with gr.Blocks(title="Whisper, Vicuna, & VITS Demo") as demo: gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and VITS") gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!") with gr.Tab("Transcribe & Synthesize"): mic_input = gr.Audio(source="microphone", type="filepath", optional=True, label="Speak Here") transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response") audio_output = gr.Audio(label="Synthesized Speech", type="numpy") transcription_state = gr.State(value="") mic_input.change( fn=transcribe_audio, inputs=[mic_input, transcription_state], outputs=[transcription_output, transcription_state] ).then( fn=synthesize_speech, inputs=transcription_output, outputs=audio_output ) demo.launch(enable_queue=True, share=False)