import spaces import torch import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel import numpy as np from espnet2.bin.tts_inference import Text2Speech import yaml # Import yaml for config loading (though not used in the current code, kept for potential future use) import os # Kept for potential future use (e.g., if loading config from files) import requests # Corrected: Import the 'requests' library import nltk # Import nltk # Download required NLTK resources try: nltk.data.find('taggers/averaged_perceptron_tagger_eng') except LookupError: nltk.download('averaged_perceptron_tagger_eng') try: nltk.data.find('corpora/cmudict') # Check for cmudict except LookupError: nltk.download('cmudict') # Load Whisper model ASR_MODEL_NAME = "openai/whisper-medium.en" asr_pipe = pipeline( task="automatic-speech-recognition", model=ASR_MODEL_NAME, chunk_length_s=30, device='cuda' if torch.cuda.is_available() else 'cpu', # Use GPU if available ) all_special_ids = asr_pipe.tokenizer.all_special_ids transcribe_token_id = all_special_ids[-5] translate_token_id = all_special_ids[-6] def _preload_and_load_models(): global vicuna_tokenizer, vicuna_model VICUNA_MODEL_NAME = "EleutherAI/gpt-neo-2.7B" # Or another model vicuna_tokenizer = AutoTokenizer.from_pretrained(VICUNA_MODEL_NAME) vicuna_model = AutoModelForCausalLM.from_pretrained( VICUNA_MODEL_NAME, torch_dtype=torch.float16, device_map="auto", # or.to('cuda') ) #.to('cuda') # Explicitly move to CUDA after loading _preload_and_load_models() tts = Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_vits") @spaces.GPU(required=True) def process_audio(microphone, state, task="transcribe"): if microphone is None: return state, state, None asr_pipe.model.config.forced_decoder_ids = [ [2, transcribe_token_id if task == "transcribe" else translate_token_id] ] text = asr_pipe(microphone)["text"] system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9). You answer questions clearly and simply, using age-appropriate language. You are also a little bit silly and like to make jokes.""" prompt = f"{system_prompt}\nUser: {text}" with torch.no_grad(): vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda') vicuna_output = vicuna_model.generate(**vicuna_input, max_new_tokens=192) vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True) # Access the first sequence [0] vicuna_response = vicuna_response.replace(prompt, "").strip() updated_state = state + "\nUser: " + text + "\n" + "Tutor: " + vicuna_response # Include user input in state try: with torch.no_grad(): # The espnet TTS model outputs a dictionary output = tts(vicuna_response) wav = output["wav"] sr = tts.fs # Get the sampling rate from the tts object audio_arr = wav.cpu().numpy() SAMPLE_RATE = sr audio_arr = audio_arr / np.abs(audio_arr).max() # Normalize to -1 to 1 audio_output = (SAMPLE_RATE, audio_arr) #sf.write('generated_audio.wav', audio_arr, SAMPLE_RATE) # Removed writing to file except requests.exceptions.RequestException as e: print(f"Error in Hugging Face API request: {e}") audio_output = None except Exception as e: print(f"Error in speech synthesis: {e}") audio_output = None return updated_state, updated_state, audio_output with gr.Blocks(title="Whisper, Vicuna, & TTS Demo") as demo: # Updated title gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Hugging Face TTS") # Updated Markdown gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!") with gr.Tab("Transcribe & Synthesize"): mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here") transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response") audio_output = gr.Audio(label="Synthesized Speech", type="numpy") # Important: type="numpy" transcription_state = gr.State(value="") mic_input.change( fn=process_audio, # Call the combined function inputs=[mic_input, transcription_state, gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], outputs=[transcription_output, transcription_state, audio_output] ) demo.launch(share=False)