Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,35 +5,35 @@ import torch
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
|
7 |
# Load the fine-tuned model and tokenizer
|
8 |
-
|
9 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
|
12 |
# Move the model to GPU if available
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
model.to(device)
|
15 |
|
16 |
-
prob_thresh = 0.3
|
17 |
|
18 |
# Function to perform inference
|
19 |
def predict(text):
|
|
|
20 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
21 |
outputs = model(**inputs)
|
22 |
logits = outputs.logits
|
23 |
probabilities = torch.sigmoid(logits) # Use sigmoid for multi-label classification
|
24 |
-
print(probabilities)
|
25 |
|
26 |
# Get predicted labels based on a threshold (e.g., 0.5)
|
27 |
predicted_labels = (probabilities > prob_thresh).nonzero()[:, 1].tolist()
|
28 |
# positions = (probabilities > 0.5).nonzero(as_tuple=False)
|
29 |
prob_values = probabilities[probabilities > prob_thresh].tolist()
|
30 |
-
print(predicted_labels)
|
31 |
-
print(prob_values)
|
32 |
|
33 |
# Map label IDs back to label names
|
34 |
-
predicted_labels_names = [model.config.id2label[label_id] for label_id in predicted_labels]
|
35 |
labels_dict = {model.config.id2label[label_id]: prob for label_id, prob in zip(predicted_labels, prob_values)}
|
36 |
-
print(labels_dict)
|
37 |
# labels_dict = {label: 1/len(predicted_labels_names) for label in predicted_labels_names}
|
38 |
return labels_dict
|
39 |
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
|
7 |
# Load the fine-tuned model and tokenizer
|
8 |
+
checkpoint_dir = "25b3nk/ollama-issues-classifier" # Replace with the actual path to your checkpoint directory
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(checkpoint_dir)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir)
|
11 |
|
12 |
# Move the model to GPU if available
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
model.to(device)
|
15 |
|
|
|
16 |
|
17 |
# Function to perform inference
|
18 |
def predict(text):
|
19 |
+
prob_thresh = 0.3
|
20 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
21 |
outputs = model(**inputs)
|
22 |
logits = outputs.logits
|
23 |
probabilities = torch.sigmoid(logits) # Use sigmoid for multi-label classification
|
24 |
+
# print(probabilities)
|
25 |
|
26 |
# Get predicted labels based on a threshold (e.g., 0.5)
|
27 |
predicted_labels = (probabilities > prob_thresh).nonzero()[:, 1].tolist()
|
28 |
# positions = (probabilities > 0.5).nonzero(as_tuple=False)
|
29 |
prob_values = probabilities[probabilities > prob_thresh].tolist()
|
30 |
+
# print(predicted_labels)
|
31 |
+
# print(prob_values)
|
32 |
|
33 |
# Map label IDs back to label names
|
34 |
+
# predicted_labels_names = [model.config.id2label[label_id] for label_id in predicted_labels]
|
35 |
labels_dict = {model.config.id2label[label_id]: prob for label_id, prob in zip(predicted_labels, prob_values)}
|
36 |
+
# print(labels_dict)
|
37 |
# labels_dict = {label: 1/len(predicted_labels_names) for label in predicted_labels_names}
|
38 |
return labels_dict
|
39 |
|