File size: 8,692 Bytes
5098eae
2339301
 
 
5098eae
2339301
 
5098eae
5a246ea
 
2339301
5098eae
2339301
 
 
 
 
5098eae
 
 
 
 
 
 
 
 
 
7606c05
5098eae
 
 
 
 
 
7606c05
5098eae
 
7606c05
5098eae
 
 
 
 
7606c05
5098eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7606c05
5098eae
 
 
 
 
 
7606c05
5098eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7606c05
5098eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7606c05
5098eae
 
 
 
 
7606c05
5098eae
 
 
7606c05
5098eae
bad37ad
2339301
 
 
 
 
 
 
 
 
 
 
5098eae
2339301
 
 
 
 
 
 
 
 
 
 
 
5098eae
 
 
 
 
 
 
 
2339301
 
 
 
 
5098eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a246ea
5098eae
5a246ea
5098eae
 
 
 
 
 
2339301
5098eae
4418e3c
5098eae
 
 
 
 
 
 
 
 
 
2339301
5098eae
4418e3c
5098eae
 
 
 
 
 
58125e7
 
 
5098eae
4418e3c
5098eae
 
 
 
 
 
 
 
 
 
 
58125e7
 
5098eae
 
 
 
 
 
5a246ea
4418e3c
 
5098eae
 
 
 
 
 
2339301
5098eae
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from fastapi.responses import FileResponse
import gradio as gr
from entity_recognition import extract_entities
from wordcloud import WordCloud
from summarization import summarizer
from utils import list_files, process_file
import pygraphviz as pgv
import os

# Initialize FastAPI
app = FastAPI()

# Request Model
class TextRequest(BaseModel):
    text: str

def wrap_label(label, max_length=15):
    """Improved label wrapping with hyphenation awareness"""
    if len(label) <= max_length:
        return label
        
    # Try to break at natural points
    break_chars = [" ", "-", "_", "/"]
    lines = []
    current = ""
    
    for char in label:
        if len(current) >= max_length and char in break_chars:
            lines.append(current.strip())
            current = char
        else:
            current += char
    
    if current:
        lines.append(current.strip())
    
    return "\\n".join(lines)

def generate_high_res_mindmap(text):
    """Generate high-resolution mind map with optimized layout"""
    entities = extract_entities(text)
    
    # Create graph with professional styling
    G = pgv.AGraph(
        directed=True,
        rankdir="TB",  # Top-to-bottom layout
        size="100,120",  # Larger canvas size
        dpi="300",  # Higher DPI for better resolution
        bgcolor="white",
        pad="1.0",
        ranksep="2.0",  # Increased spacing between ranks
        nodesep="1.5",  # Increased spacing between nodes
        splines="ortho",  # Orthogonal edges for cleaner look
        overlap="false",
        concentrate="true",
        quantum="0.5",
        fontname="Helvetica"
    )

    # Node styling
    G.node_attr.update({
        "fontsize": "28",
        "fontname": "Helvetica Bold",
        "shape": "Mrecord",  # Rounded rectangles with fields
        "style": "filled,rounded",
        "fillcolor": "#E1F5FE",  # Light blue
        "color": "#0288D1",  # Darker blue border
        "height": "0.6",
        "width": "1.8",
        "penwidth": "2.0"
    })

    # Edge styling
    G.edge_attr.update({
        "color": "#757575",  # Medium gray
        "penwidth": "2.5",
        "arrowsize": "1.2",
        "fontname": "Helvetica",
        "fontsize": "24",
        "fontcolor": "#616161"
    })

    # Add central document node
    G.add_node("DOCUMENT", 
              shape="doubleoctagon",
              fillcolor="#4FC3F7",
              fontsize="36",
              width="3.0",
              height="1.2")

    # Process entities with hierarchical grouping
    max_main_categories = 6
    max_subcategories = 5
    max_entities = 8

    for cat_idx, (category, values) in enumerate(entities.items()):
        if cat_idx >= max_main_categories:
            break
            
        # Main category node
        cat_node = f"CAT_{cat_idx}"
        G.add_node(cat_node,
                  label=wrap_label(category.upper(), 18),
                  shape="tab",
                  fillcolor="#81D4FA")
        
        G.add_edge("DOCUMENT", cat_node, 
                 label="contains",
                 penwidth="3.0")

        # Add subcategories if needed
        if len(values) > max_entities:
            grouped_values = [values[i:i+max_entities] for i in range(0, len(values), max_entities)]
            for sub_idx, group in enumerate(grouped_values):
                if sub_idx >= max_subcategories:
                    break
                    
                sub_node = f"SUB_{cat_idx}_{sub_idx}"
                G.add_node(sub_node,
                          label=f"Group {sub_idx+1}",
                          shape="folder",
                          fillcolor="#B3E5FC")
                G.add_edge(cat_node, sub_node)
                
                # Add entities to subcategory
                for ent_idx, value in enumerate(group):
                    ent_node = f"ENT_{cat_idx}_{sub_idx}_{ent_idx}"
                    G.add_node(ent_node,
                              label=wrap_label(value, 15),
                              shape="note",
                              fillcolor="#E1F5FE")
                    G.add_edge(sub_node, ent_node)
        else:
            # Directly add entities to main category
            for ent_idx, value in enumerate(values):
                if ent_idx >= max_entities:
                    break
                ent_node = f"ENT_{cat_idx}_{ent_idx}"
                G.add_node(ent_node,
                          label=wrap_label(value, 15),
                          shape="note",
                          fillcolor="#E1F5FE")
                G.add_edge(cat_node, ent_node)

    # Generate high-resolution output
    output_dir = "mindmaps"
    os.makedirs(output_dir, exist_ok=True)
    output_path = os.path.join(output_dir, "mindmap.svg")  # Use SVG for scalability
    
    # Use sfdp layout engine for large graphs
    G.draw(output_path,
          format="svg",
          prog="sfdp",
          args="-Goverlap=prism -Gepsilon=0.0001 -Gmaxiter=5000 -Gbgcolor=white")
    
    # Convert SVG to high-res PNG (optional)
    png_path = output_path.replace(".svg", ".png")
    os.system(f"convert -density 300 -resize 5000x5000 {output_path} {png_path}")
    
    return png_path

@app.post("/summarize")
def summarize_text(request: TextRequest):
    chunks = [request.text[i:i+500] for i in range(0, len(request.text), 500)]
    summaries = []
    for chunk in chunks:
        try:
            summary = summarizer(
                chunk, 
                max_length=130, 
                min_length=30, 
                do_sample=False,
                truncation=True
            )
            summaries.append(summary[0]['summary_text'])
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Summarization error: {str(e)}")
    return {"summary": " ".join(summaries)}

@app.post("/entities")
def extract_entities_endpoint(request: TextRequest):
    return {"entities": extract_entities(request.text)}

@app.post("/wordcloud")
def generate_word_cloud(request: TextRequest):
    wordcloud = WordCloud(
        width=1200, 
        height=1200,
        max_font_size=120, 
        min_font_size=20, 
        background_color="white",
        colormap="viridis"
    ).generate(request.text)
    img_path = "wordcloud.png"
    wordcloud.to_file(img_path)
    return FileResponse(img_path, media_type="image/png", filename="wordcloud.png")

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(), css="""
.mindmap-container img {
    max-height: none !important;
    min-width: 100% !important;
    object-fit: contain !important;
    background: white !important;
    border: 1px solid #e0e0e0 !important;
    border-radius: 8px !important;
    padding: 20px !important;
}
.gradio-container { max-width: 1400px !important; }
""") as iface:
    
    gr.Markdown("# JFK Document Analysis Suite")
    gr.Markdown("Analyze declassified documents with AI-powered tools")

    # File selection
    with gr.Row():
        file_dropdown = gr.Dropdown(
            choices=list_files(), 
            label="Select Document",
            interactive=True
        )
        process_btn = gr.Button("Process Document", variant="primary")

    # Document display
    with gr.Row():
        full_doc_text = gr.Textbox(
            label="Full Document Text",
            lines=15,
            max_lines=25
        )
        output_summary = gr.Textbox(
            label="AI Summary",
            lines=15,
            max_lines=25
        )

    # Analysis results
    with gr.Row():
        output_entities = gr.JSON(
            label="Extracted Entities",
            show_label=True
        )
        output_wordcloud = gr.Image(
            label="Word Cloud",
            height=600,
            width=600
            
        )

    # Mind map section
    with gr.Row():
        mindmap_btn = gr.Button(
            "Generate Enhanced Mind Map",
            variant="primary"
        )
    
    with gr.Row():
        output_mindmap = gr.Image(
            label="High-Resolution Mind Map",
            elem_classes="mindmap-container",
            height=800,
            width=800
        )

    # Event handlers
    process_btn.click(
        fn=process_file,
        inputs=file_dropdown,
        outputs=[full_doc_text, output_summary, output_entities, output_wordcloud]
    )

    mindmap_btn.click(
        fn=generate_high_res_mindmap,
        inputs=full_doc_text,
        outputs=output_mindmap
    )

if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )