File size: 16,127 Bytes
2cc87ec
86277c0
2cc87ec
86277c0
 
2cc87ec
 
efae5be
86277c0
 
 
efae5be
 
 
 
2cc87ec
 
 
 
 
 
 
86277c0
 
 
 
1681237
86277c0
2cc87ec
efae5be
 
 
 
 
2cc87ec
1681237
 
 
2cc87ec
efae5be
1681237
86277c0
 
2cc87ec
86277c0
efae5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86277c0
1681237
fed112f
86277c0
 
1681237
86277c0
 
 
 
fed112f
86277c0
 
 
 
 
1681237
 
 
fed112f
 
 
 
 
 
 
 
1681237
86277c0
 
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681237
 
 
 
 
86277c0
1681237
 
 
 
 
 
 
 
 
 
86277c0
 
1681237
86277c0
 
 
 
fed112f
 
 
86277c0
 
fed112f
86277c0
 
 
2cc87ec
 
 
1681237
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681237
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed112f
 
2cc87ec
 
 
 
 
 
 
 
fed112f
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed112f
1681237
2cc87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import json
import logging
from typing import Iterable, Optional, Sequence, Union

import gradio as gr
import pandas as pd
from pie_datasets import Dataset, IterableDataset, load_dataset
from pie_modules.document.processing import RegexPartitioner, SpansViaRelationMerger
from pytorch_ie import Pipeline
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import (
    TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from typing_extensions import Protocol

from src.langchain_modules import DocumentAwareSpanRetriever
from src.langchain_modules.span_retriever import (
    DocumentAwareSpanRetrieverWithRelations,
    _parse_config,
)

logger = logging.getLogger(__name__)


def annotate_document(
    document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
    argumentation_model: Pipeline,
    handle_parts_of_same: bool = False,
) -> Union[
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
    TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
]:
    """Annotate a document with the provided pipeline.

    Args:
        document: The document to annotate.
        argumentation_model: The pipeline to use for annotation.
        handle_parts_of_same: Whether to merge spans that are part of the same entity into a single multi span.
    """

    # execute prediction pipeline
    argumentation_model(document)

    if handle_parts_of_same:
        merger = SpansViaRelationMerger(
            relation_layer="binary_relations",
            link_relation_label="parts_of_same",
            create_multi_spans=True,
            result_document_type=TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
            result_field_mapping={
                "labeled_spans": "labeled_multi_spans",
                "binary_relations": "binary_relations",
                "labeled_partitions": "labeled_partitions",
            },
        )
        document = merger(document)

    return document


def create_document(
    text: str, doc_id: str, split_regex: Optional[str] = None
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
    """Create a TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions from the provided
    text.

    Parameters:
        text: The text to process.
        doc_id: The ID of the document.
        split_regex: A regular expression pattern to use for splitting the text into partitions.

    Returns:
        The processed document.
    """

    document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(
        id=doc_id, text=text, metadata={}
    )
    if split_regex is not None:
        partitioner = RegexPartitioner(
            pattern=split_regex, partition_layer_name="labeled_partitions"
        )
        document = partitioner(document)
    else:
        # add single partition from the whole text (the model only considers text in partitions)
        document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
    return document


def add_annotated_pie_documents(
    retriever: DocumentAwareSpanRetriever,
    pie_documents: Sequence[TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions],
    use_predicted_annotations: bool,
    verbose: bool = False,
) -> None:
    if verbose:
        gr.Info(f"Create span embeddings for {len(pie_documents)} documents...")
    num_docs_before = len(retriever.docstore)
    retriever.add_pie_documents(pie_documents, use_predicted_annotations=use_predicted_annotations)
    # number of documents that were overwritten
    num_overwritten_docs = num_docs_before + len(pie_documents) - len(retriever.docstore)
    # warn if documents were overwritten
    if num_overwritten_docs > 0:
        gr.Warning(f"{num_overwritten_docs} documents were overwritten.")


def process_texts(
    texts: Iterable[str],
    doc_ids: Iterable[str],
    argumentation_model: Pipeline,
    retriever: DocumentAwareSpanRetriever,
    split_regex_escaped: Optional[str],
    handle_parts_of_same: bool = False,
    verbose: bool = False,
) -> None:
    # check that doc_ids are unique
    if len(set(doc_ids)) != len(list(doc_ids)):
        raise gr.Error("Document IDs must be unique.")
    pie_documents = [
        create_document(text=text, doc_id=doc_id, split_regex=split_regex_escaped)
        for text, doc_id in zip(texts, doc_ids)
    ]
    if verbose:
        gr.Info(f"Annotate {len(pie_documents)} documents...")
    pie_documents = [
        annotate_document(
            document=pie_document,
            argumentation_model=argumentation_model,
            handle_parts_of_same=handle_parts_of_same,
        )
        for pie_document in pie_documents
    ]
    add_annotated_pie_documents(
        retriever=retriever,
        pie_documents=pie_documents,
        use_predicted_annotations=True,
        verbose=verbose,
    )


def add_annotated_pie_documents_from_dataset(
    retriever: DocumentAwareSpanRetriever, verbose: bool = False, **load_dataset_kwargs
) -> None:
    try:
        gr.Info(
            "Loading PIE dataset with parameters:\n" + json.dumps(load_dataset_kwargs, indent=2)
        )
        dataset = load_dataset(**load_dataset_kwargs)
        if not isinstance(dataset, (Dataset, IterableDataset)):
            raise gr.Error("Loaded dataset is not of type PIE (Iterable)Dataset.")
        dataset_converted = dataset.to_document_type(
            TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
        )
        add_annotated_pie_documents(
            retriever=retriever,
            pie_documents=dataset_converted,
            use_predicted_annotations=False,
            verbose=verbose,
        )
    except Exception as e:
        raise gr.Error(f"Failed to load dataset: {e}")


def load_argumentation_model(
    model_name: str,
    revision: Optional[str] = None,
    device: str = "cpu",
) -> Pipeline:
    try:
        # the Pipeline class expects an integer for the device
        if device == "cuda":
            pipeline_device = 0
        elif device.startswith("cuda:"):
            pipeline_device = int(device.split(":")[1])
        elif device == "cpu":
            pipeline_device = -1
        else:
            raise gr.Error(f"Invalid device: {device}")

        model = AutoPipeline.from_pretrained(
            model_name,
            device=pipeline_device,
            num_workers=0,
            taskmodule_kwargs=dict(revision=revision),
            model_kwargs=dict(revision=revision),
        )
        gr.Info(
            f"Loaded argumentation model: model_name={model_name}, revision={revision}, device={device}"
        )
    except Exception as e:
        raise gr.Error(f"Failed to load argumentation model: {e}")

    return model


def load_retriever(
    retriever_config: str,
    config_format: str,
    device: str = "cpu",
    previous_retriever: Optional[DocumentAwareSpanRetrieverWithRelations] = None,
) -> DocumentAwareSpanRetrieverWithRelations:
    try:
        retriever_config = _parse_config(retriever_config, format=config_format)
        # set device for the embeddings pipeline
        retriever_config["vectorstore"]["embedding"]["pipeline_kwargs"]["device"] = device
        result = DocumentAwareSpanRetrieverWithRelations.instantiate_from_config(retriever_config)
        # if a previous retriever is provided, load all documents and vectors from the previous retriever
        if previous_retriever is not None:
            # documents
            all_doc_ids = list(previous_retriever.docstore.yield_keys())
            gr.Info(f"Storing {len(all_doc_ids)} documents from previous retriever...")
            all_docs = previous_retriever.docstore.mget(all_doc_ids)
            result.docstore.mset([(doc.id, doc) for doc in all_docs])
            # spans (with vectors)
            all_span_ids = list(previous_retriever.vectorstore.yield_keys())
            all_spans = previous_retriever.vectorstore.mget(all_span_ids)
            result.vectorstore.mset([(span.id, span) for span in all_spans])

        gr.Info("Retriever loaded successfully.")
        return result
    except Exception as e:
        raise gr.Error(f"Failed to load retriever: {e}")


def retrieve_similar_spans(
    retriever: DocumentAwareSpanRetriever,
    query_span_id: str,
    **kwargs,
) -> pd.DataFrame:
    if not query_span_id.strip():
        raise gr.Error("No query span selected.")
    try:
        retrieval_result = retriever.invoke(input=query_span_id, **kwargs)
        records = []
        for similar_span_doc in retrieval_result:
            pie_doc, metadata = retriever.docstore.unwrap_with_metadata(similar_span_doc)
            span_ann = metadata["attached_span"]
            records.append(
                {
                    "doc_id": pie_doc.id,
                    "span_id": similar_span_doc.id,
                    "score": metadata["relevance_score"],
                    "label": span_ann.label,
                    "text": str(span_ann),
                }
            )
        return (
            pd.DataFrame(records, columns=["doc_id", "score", "label", "text", "span_id"])
            .sort_values(by="score", ascending=False)
            .round(3)
        )
    except Exception as e:
        raise gr.Error(f"Failed to retrieve similar ADUs: {e}")


def retrieve_relevant_spans(
    retriever: DocumentAwareSpanRetriever,
    query_span_id: str,
    relation_label_mapping: Optional[dict[str, str]] = None,
    **kwargs,
) -> pd.DataFrame:
    if not query_span_id.strip():
        raise gr.Error("No query span selected.")
    try:
        relation_label_mapping = relation_label_mapping or {}
        retrieval_result = retriever.invoke(input=query_span_id, return_related=True, **kwargs)
        records = []
        for relevant_span_doc in retrieval_result:
            pie_doc, metadata = retriever.docstore.unwrap_with_metadata(relevant_span_doc)
            span_ann = metadata["attached_span"]
            tail_span_ann = metadata["attached_tail_span"]
            mapped_relation_label = relation_label_mapping.get(
                metadata["relation_label"], metadata["relation_label"]
            )
            records.append(
                {
                    "doc_id": pie_doc.id,
                    "type": mapped_relation_label,
                    "rel_score": metadata["relation_score"],
                    "text": str(tail_span_ann),
                    "span_id": relevant_span_doc.id,
                    "label": tail_span_ann.label,
                    "ref_score": metadata["relevance_score"],
                    "ref_label": span_ann.label,
                    "ref_text": str(span_ann),
                    "ref_span_id": metadata["head_id"],
                }
            )
        return (
            pd.DataFrame(
                records,
                columns=[
                    "type",
                    # omitted for now, we get no valid relation scores for the generative model
                    # "rel_score",
                    "ref_score",
                    "label",
                    "text",
                    "ref_label",
                    "ref_text",
                    "doc_id",
                    "span_id",
                    "ref_span_id",
                ],
            )
            .sort_values(by=["ref_score"], ascending=False)
            .round(3)
        )
    except Exception as e:
        raise gr.Error(f"Failed to retrieve relevant ADUs: {e}")


class RetrieverCallable(Protocol):
    def __call__(
        self,
        retriever: DocumentAwareSpanRetriever,
        query_span_id: str,
        **kwargs,
    ) -> Optional[pd.DataFrame]:
        pass


def _retrieve_for_all_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    retrieve_func: RetrieverCallable,
    query_span_id_column: str = "query_span_id",
    **kwargs,
) -> Optional[pd.DataFrame]:
    if not query_doc_id.strip():
        raise gr.Error("No query document selected.")
    try:
        span_id2idx = retriever.get_span_id2idx_from_doc(query_doc_id)
        gr.Info(f"Retrieving results for {len(span_id2idx)} ADUs in document {query_doc_id}...")
        span_results = {
            query_span_id: retrieve_func(
                retriever=retriever,
                query_span_id=query_span_id,
                **kwargs,
            )
            for query_span_id in span_id2idx.keys()
        }
        span_results_not_empty = {
            query_span_id: df
            for query_span_id, df in span_results.items()
            if df is not None and not df.empty
        }

        # add column with query_span_id
        for query_span_id, query_span_result in span_results_not_empty.items():
            query_span_result[query_span_id_column] = query_span_id

        if len(span_results_not_empty) == 0:
            gr.Info(f"No results found for any ADU in document {query_doc_id}.")
            return None
        else:
            result = pd.concat(span_results_not_empty.values(), ignore_index=True)
            gr.Info(f"Retrieved {len(result)} ADUs for document {query_doc_id}.")
            return result
    except Exception as e:
        raise gr.Error(
            f'Failed to retrieve results for all ADUs in document "{query_doc_id}": {e}'
        )


def retrieve_all_similar_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_spans(
        retriever=retriever,
        query_doc_id=query_doc_id,
        retrieve_func=retrieve_similar_spans,
        **kwargs,
    )


def retrieve_all_relevant_spans(
    retriever: DocumentAwareSpanRetriever,
    query_doc_id: str,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_spans(
        retriever=retriever,
        query_doc_id=query_doc_id,
        retrieve_func=retrieve_relevant_spans,
        **kwargs,
    )


class RetrieverForAllSpansCallable(Protocol):
    def __call__(
        self,
        retriever: DocumentAwareSpanRetriever,
        query_doc_id: str,
        **kwargs,
    ) -> Optional[pd.DataFrame]:
        pass


def _retrieve_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    retrieve_func: RetrieverForAllSpansCallable,
    query_doc_id_column: str = "query_doc_id",
    **kwargs,
) -> Optional[pd.DataFrame]:
    try:
        all_doc_ids = list(retriever.docstore.yield_keys())
        gr.Info(f"Retrieving results for {len(all_doc_ids)} documents...")
        doc_results = {
            doc_id: retrieve_func(retriever=retriever, query_doc_id=doc_id, **kwargs)
            for doc_id in all_doc_ids
        }
        doc_results_not_empty = {
            doc_id: df for doc_id, df in doc_results.items() if df is not None and not df.empty
        }
        # add column with query_doc_id
        for doc_id, doc_result in doc_results_not_empty.items():
            doc_result[query_doc_id_column] = doc_id

        if len(doc_results_not_empty) == 0:
            gr.Info("No results found for any document.")
            return None
        else:
            result = pd.concat(doc_results_not_empty, ignore_index=True)
            gr.Info(f"Retrieved {len(result)} ADUs for all documents.")
            return result
    except Exception as e:
        raise gr.Error(f"Failed to retrieve results for all documents: {e}")


def retrieve_all_similar_spans_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_documents(
        retriever=retriever,
        retrieve_func=retrieve_all_similar_spans,
        **kwargs,
    )


def retrieve_all_relevant_spans_for_all_documents(
    retriever: DocumentAwareSpanRetriever,
    **kwargs,
) -> Optional[pd.DataFrame]:
    return _retrieve_for_all_documents(
        retriever=retriever,
        retrieve_func=retrieve_all_relevant_spans,
        **kwargs,
    )