File size: 24,006 Bytes
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b36e90
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import hydra
import pyrootutils
from omegaconf import DictConfig, OmegaConf, SCMode

root = pyrootutils.setup_root(
    search_from=__file__,
    indicator=[".project-root"],
    pythonpath=True,
    dotenv=True,
)

import json
import logging

import gradio as gr
import torch
import yaml

from src.demo.annotation_utils import load_argumentation_model
from src.demo.backend_utils import (
    download_processed_documents,
    process_text_from_arxiv,
    process_uploaded_files,
    render_annotated_document,
    upload_processed_documents,
    wrapped_add_annotated_pie_documents_from_dataset,
    wrapped_process_text,
)
from src.demo.frontend_utils import (
    change_tab,
    escape_regex,
    get_cell_for_fixed_column_from_df,
    open_accordion,
    unescape_regex,
)
from src.demo.rendering_utils import AVAILABLE_RENDER_MODES, HIGHLIGHT_SPANS_JS
from src.demo.retriever_utils import (
    get_document_as_dict,
    get_span_annotation,
    load_retriever,
    retrieve_all_relevant_spans,
    retrieve_all_similar_spans,
    retrieve_relevant_spans,
    retrieve_similar_spans,
)


def load_yaml_config(path: str) -> str:
    with open(path, "r") as file:
        yaml_string = file.read()
    config = yaml.safe_load(yaml_string)
    return yaml.dump(config)


def resolve_config(cfg) -> dict:
    return OmegaConf.to_container(cfg, resolve=True, structured_config_mode=SCMode.DICT)


@hydra.main(version_base="1.2", config_path=str(root / "configs"), config_name="demo.yaml")
def main(cfg: DictConfig) -> None:

    # configure logging
    logging.basicConfig()

    # resolve everything in the config to prevent any issues with to json serialization etc.
    cfg = resolve_config(cfg)

    example_text = cfg["example_text"]

    default_device = "cuda" if torch.cuda.is_available() else "cpu"

    default_retriever_config_str = load_yaml_config(cfg["default_retriever_config_path"])

    default_model_name = cfg["default_model_name"]
    default_model_revision = cfg["default_model_revision"]
    handle_parts_of_same = cfg["handle_parts_of_same"]

    default_arxiv_id = cfg["default_arxiv_id"]
    default_load_pie_dataset_kwargs_str = json.dumps(
        cfg["default_load_pie_dataset_kwargs"], indent=2
    )

    default_render_mode = cfg["default_render_mode"]
    if default_render_mode not in AVAILABLE_RENDER_MODES:
        raise ValueError(
            f"Invalid default render mode '{default_render_mode}'. "
            f"Choose one of {AVAILABLE_RENDER_MODES}."
        )
    default_render_kwargs = cfg["default_render_kwargs"]

    # captions for better readability
    default_split_regex = cfg["default_split_regex"]
    # map from render mode to the corresponding caption
    render_mode2caption = {
        render_mode: cfg["render_mode_captions"].get(render_mode, render_mode)
        for render_mode in AVAILABLE_RENDER_MODES
    }
    render_caption2mode = {v: k for k, v in render_mode2caption.items()}
    default_min_similarity = cfg["default_min_similarity"]
    layer_caption_mapping = cfg["layer_caption_mapping"]
    relation_name_mapping = cfg["relation_name_mapping"]

    gr.Info("Loading models ...")
    argumentation_model = load_argumentation_model(
        model_name=default_model_name,
        revision=default_model_revision,
        device=default_device,
    )
    retriever = load_retriever(
        default_retriever_config_str, device=default_device, config_format="yaml"
    )

    with gr.Blocks() as demo:
        # wrap the pipeline and the embedding model/tokenizer in a tuple to avoid that it gets called
        # models_state = gr.State((argumentation_model, embedding_model))
        argumentation_model_state = gr.State((argumentation_model,))
        retriever_state = gr.State((retriever,))

        with gr.Row():
            with gr.Tabs() as left_tabs:
                with gr.Tab("User Input", id="user_input") as user_input_tab:
                    doc_id = gr.Textbox(
                        label="Document ID",
                        value="user_input",
                    )
                    doc_text = gr.Textbox(
                        label="Text",
                        lines=20,
                        value=example_text,
                    )

                    with gr.Accordion("Model Configuration", open=False):
                        with gr.Accordion("argumentation structure", open=True):
                            model_name = gr.Textbox(
                                label="Model Name",
                                value=default_model_name,
                            )
                            model_revision = gr.Textbox(
                                label="Model Revision",
                                value=default_model_revision,
                            )
                            load_arg_model_btn = gr.Button("Load Argumentation Model")

                        with gr.Accordion("retriever", open=True):
                            retriever_config = gr.Code(
                                language="yaml",
                                label="Retriever Configuration",
                                value=default_retriever_config_str,
                                lines=len(default_retriever_config_str.split("\n")),
                            )
                            load_retriever_btn = gr.Button("Load Retriever")

                        device = gr.Textbox(
                            label="Device (e.g. 'cuda' or 'cpu')",
                            value=default_device,
                        )
                        load_arg_model_btn.click(
                            fn=lambda _model_name, _model_revision, _device: (
                                load_argumentation_model(
                                    model_name=_model_name,
                                    revision=_model_revision,
                                    device=_device,
                                ),
                            ),
                            inputs=[model_name, model_revision, device],
                            outputs=argumentation_model_state,
                        )
                        load_retriever_btn.click(
                            fn=lambda _retriever_config, _device, _previous_retriever: (
                                load_retriever(
                                    retriever_config_str=_retriever_config,
                                    device=_device,
                                    previous_retriever=_previous_retriever[0],
                                    config_format="yaml",
                                ),
                            ),
                            inputs=[retriever_config, device, retriever_state],
                            outputs=retriever_state,
                        )

                        split_regex_escaped = gr.Textbox(
                            label="Regex to partition the text",
                            placeholder="Regular expression pattern to split the text into partitions",
                            value=escape_regex(default_split_regex),
                        )

                    predict_btn = gr.Button("Analyse")

                with gr.Tab("Analysed Document", id="analysed_document") as analysed_document_tab:
                    selected_document_id = gr.Textbox(
                        label="Document ID", max_lines=1, interactive=False
                    )
                    rendered_output = gr.HTML(label="Rendered Output")

                    with gr.Accordion("Render Options", open=False):
                        render_as = gr.Dropdown(
                            label="Render with",
                            choices=list(render_mode2caption.values()),
                            value=render_mode2caption[default_render_mode],
                        )
                        render_kwargs = gr.Code(
                            language="json",
                            label="Render Arguments",
                            lines=len(json.dumps(default_render_kwargs, indent=2).split("\n")),
                            value=json.dumps(default_render_kwargs, indent=2),
                        )
                        render_btn = gr.Button("Re-render")

                    with gr.Accordion("See plain result ...", open=False):
                        get_document_json_btn = gr.Button("Fetch annotated document as JSON")
                        document_json = gr.JSON(label="Model Output")

            with gr.Tabs() as right_tabs:
                with gr.Tab("Retrieval", id="retrieval") as retrieval_tab:
                    with gr.Accordion(
                        "Indexed Documents", open=False
                    ) as processed_documents_accordion:
                        processed_documents_df = gr.DataFrame(
                            headers=["id", "num_adus", "num_relations"],
                            interactive=False,
                            elem_classes="df-docstore",
                        )
                        gr.Markdown("Data Snapshot:")
                        with gr.Row():
                            download_processed_documents_btn = gr.DownloadButton("Download")
                            upload_processed_documents_btn = gr.UploadButton(
                                "Upload", file_types=["file"]
                            )

                    # currently not used
                    # relation_types = set_relation_types(
                    #    argumentation_model_state.value[0], default=["supports_reversed", "contradicts_reversed"]
                    # )

                    # Dummy textbox to hold the hover adu id. On click on the rendered output,
                    # its content will be copied to selected_adu_id which will trigger the retrieval.
                    hover_adu_id = gr.Textbox(
                        label="ID (hover)",
                        elem_id="hover_adu_id",
                        interactive=False,
                        visible=False,
                    )
                    selected_adu_id = gr.Textbox(
                        label="ID (selected)",
                        elem_id="selected_adu_id",
                        interactive=False,
                        visible=False,
                    )
                    selected_adu_text = gr.Textbox(label="Selected ADU", interactive=False)

                    with gr.Accordion("Relevant ADUs from other documents", open=True):
                        relevant_adus_df = gr.DataFrame(
                            headers=[
                                "relation",
                                "adu",
                                "reference_adu",
                                "doc_id",
                                "sim_score",
                                "rel_score",
                            ],
                            interactive=False,
                        )

                    with gr.Accordion("Retrieval Configuration", open=False):
                        min_similarity = gr.Slider(
                            label="Minimum Similarity",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.01,
                            value=default_min_similarity,
                        )
                        top_k = gr.Slider(
                            label="Top K",
                            minimum=2,
                            maximum=50,
                            step=1,
                            value=10,
                        )
                        retrieve_similar_adus_btn = gr.Button(
                            "Retrieve *similar* ADUs for *selected* ADU"
                        )
                        similar_adus_df = gr.DataFrame(
                            headers=["doc_id", "adu_id", "score", "text"], interactive=False
                        )
                        retrieve_all_similar_adus_btn = gr.Button(
                            "Retrieve *similar* ADUs for *all* ADUs in the document"
                        )
                        all_similar_adus_df = gr.DataFrame(
                            headers=["doc_id", "query_adu_id", "adu_id", "score", "text"],
                            interactive=False,
                        )
                        retrieve_all_relevant_adus_btn = gr.Button(
                            "Retrieve *relevant* ADUs for *all* ADUs in the document"
                        )
                        all_relevant_adus_df = gr.DataFrame(
                            headers=["doc_id", "adu_id", "score", "text"], interactive=False
                        )

                with gr.Tab("Import Documents", id="import_documents") as import_documents_tab:
                    upload_btn = gr.UploadButton(
                        "Batch Analyse Texts",
                        file_types=["text"],
                        file_count="multiple",
                    )

                    with gr.Accordion("Import text from arXiv", open=False):
                        arxiv_id = gr.Textbox(
                            label="arXiv paper ID",
                            placeholder=f"e.g. {default_arxiv_id}",
                            max_lines=1,
                        )
                        load_arxiv_only_abstract = gr.Checkbox(label="abstract only", value=False)
                        load_arxiv_btn = gr.Button(
                            "Load & Analyse from arXiv", variant="secondary"
                        )

                    with gr.Accordion(
                        "Import argument structure annotated PIE dataset", open=False
                    ):
                        load_pie_dataset_kwargs_str = gr.Code(
                            language="json",
                            label="Parameters for Loading the PIE Dataset",
                            value=default_load_pie_dataset_kwargs_str,
                            lines=len(default_load_pie_dataset_kwargs_str.split("\n")),
                        )
                        load_pie_dataset_btn = gr.Button("Load & Embed PIE Dataset")

        render_event_kwargs = dict(
            fn=lambda _retriever, _document_id, _render_as, _render_kwargs: render_annotated_document(
                retriever=_retriever[0],
                document_id=_document_id,
                render_with=render_caption2mode[_render_as],
                render_kwargs_json=_render_kwargs,
            ),
            inputs=[retriever_state, selected_document_id, render_as, render_kwargs],
            outputs=rendered_output,
        )

        show_overview_kwargs = dict(
            fn=lambda _retriever: _retriever[0].docstore.overview(
                layer_captions=layer_caption_mapping, use_predictions=True
            ),
            inputs=[retriever_state],
            outputs=[processed_documents_df],
        )
        predict_btn.click(
            fn=lambda: change_tab(analysed_document_tab.id), inputs=[], outputs=[left_tabs]
        ).then(
            fn=lambda _doc_text, _doc_id, _argumentation_model, _retriever, _split_regex_escaped: wrapped_process_text(
                text=_doc_text,
                doc_id=_doc_id,
                argumentation_model=_argumentation_model[0],
                retriever=_retriever[0],
                split_regex_escaped=(
                    unescape_regex(_split_regex_escaped) if _split_regex_escaped else None
                ),
                handle_parts_of_same=handle_parts_of_same,
            ),
            inputs=[
                doc_text,
                doc_id,
                argumentation_model_state,
                retriever_state,
                split_regex_escaped,
            ],
            outputs=[selected_document_id],
            api_name="predict",
        ).success(
            **show_overview_kwargs
        ).success(
            **render_event_kwargs
        )
        render_btn.click(**render_event_kwargs, api_name="render")

        load_arxiv_btn.click(
            fn=lambda: change_tab(analysed_document_tab.id), inputs=[], outputs=[left_tabs]
        ).then(
            fn=lambda _arxiv_id, _load_arxiv_only_abstract, _argumentation_model, _retriever, _split_regex_escaped: process_text_from_arxiv(
                arxiv_id=_arxiv_id.strip() or default_arxiv_id,
                abstract_only=_load_arxiv_only_abstract,
                argumentation_model=_argumentation_model[0],
                retriever=_retriever[0],
                split_regex_escaped=(
                    unescape_regex(_split_regex_escaped) if _split_regex_escaped else None
                ),
                handle_parts_of_same=handle_parts_of_same,
            ),
            inputs=[
                arxiv_id,
                load_arxiv_only_abstract,
                argumentation_model_state,
                retriever_state,
                split_regex_escaped,
            ],
            outputs=[selected_document_id],
            api_name="predict",
        ).success(
            **show_overview_kwargs
        )

        load_pie_dataset_btn.click(
            fn=lambda: change_tab(retrieval_tab.id), inputs=[], outputs=[right_tabs]
        ).then(fn=open_accordion, inputs=[], outputs=[processed_documents_accordion]).then(
            fn=lambda _retriever, _load_pie_dataset_kwargs_str: wrapped_add_annotated_pie_documents_from_dataset(
                retriever=_retriever[0],
                verbose=True,
                layer_captions=layer_caption_mapping,
                **json.loads(_load_pie_dataset_kwargs_str),
            ),
            inputs=[retriever_state, load_pie_dataset_kwargs_str],
            outputs=[processed_documents_df],
        )

        selected_document_id.change(
            fn=lambda: change_tab(analysed_document_tab.id), inputs=[], outputs=[left_tabs]
        ).then(**render_event_kwargs)

        get_document_json_btn.click(
            fn=lambda _retriever, _document_id: get_document_as_dict(
                retriever=_retriever[0], doc_id=_document_id
            ),
            inputs=[retriever_state, selected_document_id],
            outputs=[document_json],
        )

        upload_btn.upload(
            fn=lambda: change_tab(retrieval_tab.id), inputs=[], outputs=[right_tabs]
        ).then(fn=open_accordion, inputs=[], outputs=[processed_documents_accordion]).then(
            fn=lambda _file_names, _argumentation_model, _retriever, _split_regex_escaped: process_uploaded_files(
                file_names=_file_names,
                argumentation_model=_argumentation_model[0],
                retriever=_retriever[0],
                split_regex_escaped=unescape_regex(_split_regex_escaped),
                handle_parts_of_same=handle_parts_of_same,
                layer_captions=layer_caption_mapping,
            ),
            inputs=[
                upload_btn,
                argumentation_model_state,
                retriever_state,
                split_regex_escaped,
            ],
            outputs=[processed_documents_df],
        )
        processed_documents_df.select(
            fn=get_cell_for_fixed_column_from_df,
            inputs=[processed_documents_df, gr.State("doc_id")],
            outputs=[selected_document_id],
        )

        download_processed_documents_btn.click(
            fn=lambda _retriever: download_processed_documents(
                _retriever[0], file_name="processed_documents"
            ),
            inputs=[retriever_state],
            outputs=[download_processed_documents_btn],
        )
        upload_processed_documents_btn.upload(
            fn=lambda file_name, _retriever: upload_processed_documents(
                file_name, retriever=_retriever[0], layer_captions=layer_caption_mapping
            ),
            inputs=[upload_processed_documents_btn, retriever_state],
            outputs=[processed_documents_df],
        )

        retrieve_relevant_adus_event_kwargs = dict(
            fn=lambda _retriever, _selected_adu_id, _min_similarity, _top_k: retrieve_relevant_spans(
                retriever=_retriever[0],
                query_span_id=_selected_adu_id,
                k=_top_k,
                score_threshold=_min_similarity,
                relation_label_mapping=relation_name_mapping,
                # columns=relevant_adus.headers
            ),
            inputs=[
                retriever_state,
                selected_adu_id,
                min_similarity,
                top_k,
            ],
            outputs=[relevant_adus_df],
        )
        relevant_adus_df.select(
            fn=get_cell_for_fixed_column_from_df,
            inputs=[relevant_adus_df, gr.State("doc_id")],
            outputs=[selected_document_id],
        )

        selected_adu_id.change(
            fn=lambda _retriever, _selected_adu_id: get_span_annotation(
                retriever=_retriever[0], span_id=_selected_adu_id
            ),
            inputs=[retriever_state, selected_adu_id],
            outputs=[selected_adu_text],
        ).success(**retrieve_relevant_adus_event_kwargs)

        retrieve_similar_adus_btn.click(
            fn=lambda _retriever, _selected_adu_id, _min_similarity, _tok_k: retrieve_similar_spans(
                retriever=_retriever[0],
                query_span_id=_selected_adu_id,
                k=_tok_k,
                score_threshold=_min_similarity,
            ),
            inputs=[
                retriever_state,
                selected_adu_id,
                min_similarity,
                top_k,
            ],
            outputs=[similar_adus_df],
        )
        similar_adus_df.select(
            fn=get_cell_for_fixed_column_from_df,
            inputs=[similar_adus_df, gr.State("doc_id")],
            outputs=[selected_document_id],
        )

        retrieve_all_similar_adus_btn.click(
            fn=lambda _retriever, _document_id, _min_similarity, _tok_k: retrieve_all_similar_spans(
                retriever=_retriever[0],
                query_doc_id=_document_id,
                k=_tok_k,
                score_threshold=_min_similarity,
                query_span_id_column="query_span_id",
            ),
            inputs=[
                retriever_state,
                selected_document_id,
                min_similarity,
                top_k,
            ],
            outputs=[all_similar_adus_df],
        )

        retrieve_all_relevant_adus_btn.click(
            fn=lambda _retriever, _document_id, _min_similarity, _tok_k: retrieve_all_relevant_spans(
                retriever=_retriever[0],
                query_doc_id=_document_id,
                k=_tok_k,
                score_threshold=_min_similarity,
                query_span_id_column="query_span_id",
            ),
            inputs=[
                retriever_state,
                selected_document_id,
                min_similarity,
                top_k,
            ],
            outputs=[all_relevant_adus_df],
        )

        # select query span id from the "retrieve all" result data frames
        all_similar_adus_df.select(
            fn=get_cell_for_fixed_column_from_df,
            inputs=[all_similar_adus_df, gr.State("query_span_id")],
            outputs=[selected_adu_id],
        )
        all_relevant_adus_df.select(
            fn=get_cell_for_fixed_column_from_df,
            inputs=[all_relevant_adus_df, gr.State("query_span_id")],
            outputs=[selected_adu_id],
        )

        # argumentation_model_state.change(
        #    fn=lambda _argumentation_model: set_relation_types(_argumentation_model[0]),
        #    inputs=[argumentation_model_state],
        #    outputs=[relation_types],
        # )

        rendered_output.change(fn=None, js=HIGHLIGHT_SPANS_JS, inputs=[], outputs=[])

    demo.launch()


if __name__ == "__main__":

    main()