File size: 32,721 Bytes
2cc87ec 9f76503 ee9934e 25fcabc fed112f b77f1d0 2cc87ec 9f76503 a347ab7 f3e17f7 25fcabc a347ab7 1681237 2cc87ec a347ab7 2cc87ec efae5be 2cc87ec efae5be 2cc87ec ee9934e f3e17f7 2cc87ec 54625d7 9f76503 1f79774 2cc87ec 1681237 fed112f a347ab7 2cc87ec fed112f efae5be 2cc87ec efae5be 2cc87ec efae5be fed112f 1f79774 9f76503 2cc87ec 25fcabc 2cc87ec 25fcabc 2cc87ec 9f76503 7d208a6 2cc87ec 7d208a6 2cc87ec 9f76503 7d208a6 9f76503 25fcabc 2cc87ec 1681237 2cc87ec 1681237 25fcabc 2cc87ec 25fcabc 4467900 2cc87ec b77f1d0 25fcabc 2cc87ec 25fcabc 2cc87ec 25fcabc 2cc87ec 25fcabc 2cc87ec b77f1d0 25fcabc a8529ac 2cc87ec 25fcabc 2cc87ec 25fcabc 2cc87ec 25fcabc 4467900 2cc87ec 4467900 2cc87ec 4467900 fed112f 4467900 2cc87ec b77f1d0 2cc87ec b77f1d0 2cc87ec b77f1d0 2cc87ec 04ce9af 2cc87ec b77f1d0 a347ab7 2cc87ec a347ab7 2cc87ec a347ab7 2cc87ec a347ab7 2cc87ec 1f79774 f3e17f7 a8529ac 2cc87ec 25fcabc 1681237 f3e17f7 2cc87ec f3e17f7 9f76503 5003662 16d7871 70fea2e 16d7871 9f76503 70fea2e c002b34 70fea2e c002b34 70fea2e 9f76503 a8529ac 1f79774 2cc87ec a8529ac 1f79774 25fcabc 1f79774 a8529ac 2cc87ec 1f79774 2cc87ec 1681237 2cc87ec 1f79774 2cc87ec fed112f a8529ac 1f79774 a8529ac 2cc87ec a8529ac 7d208a6 a8529ac 2cc87ec a8529ac 2cc87ec a8529ac 25fcabc b77f1d0 25fcabc fed112f b77f1d0 737bf71 b77f1d0 25fcabc fed112f 2cc87ec 25fcabc 2cc87ec 25fcabc 4467900 2cc87ec 4467900 2cc87ec fed112f 2cc87ec fed112f 2cc87ec 4467900 25fcabc 2cc87ec b77f1d0 2cc87ec 25fcabc 2cc87ec 1f79774 25fcabc 2cc87ec 25fcabc 1f79774 fed112f 2cc87ec fed112f 2cc87ec fed112f 2cc87ec efae5be 2cc87ec efae5be 2cc87ec ee9934e 2cc87ec 25fcabc 2cc87ec 25fcabc a8529ac 25fcabc b77f1d0 2cc87ec fed112f 2cc87ec fed112f 25fcabc 2cc87ec 25fcabc b77f1d0 2cc87ec b77f1d0 2cc87ec b77f1d0 25fcabc 2cc87ec 148e0d6 25fcabc 2cc87ec b77f1d0 25fcabc 4467900 25fcabc 2cc87ec 1f79774 b77f1d0 2cc87ec 148e0d6 2cc87ec b77f1d0 25fcabc 2cc87ec 148e0d6 25fcabc 2cc87ec b77f1d0 25fcabc 4467900 25fcabc 2cc87ec 25fcabc 2cc87ec 4467900 2cc87ec fed112f 2cc87ec fed112f 4467900 2cc87ec 25fcabc efae5be ff28cb9 ee9934e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import pyrootutils
root = pyrootutils.setup_root(
search_from=__file__,
indicator=[".project-root"],
pythonpath=True,
dotenv=True,
)
import json
import logging
import os.path
import re
import tempfile
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import arxiv
import gradio as gr
import pandas as pd
import requests
import torch
import yaml
from bs4 import BeautifulSoup
from model_utils import (
add_annotated_pie_documents_from_dataset,
load_argumentation_model,
load_retriever,
process_texts,
retrieve_all_relevant_spans,
retrieve_all_similar_spans,
retrieve_relevant_spans,
retrieve_similar_spans,
)
from pie_modules.taskmodules import PointerNetworkTaskModuleForEnd2EndRE
from pytorch_ie import Annotation, Pipeline
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan
from rendering_utils import HIGHLIGHT_SPANS_JS, render_displacy, render_pretty_table
from src.langchain_modules import (
DocumentAwareSpanRetriever,
DocumentAwareSpanRetrieverWithRelations,
)
logger = logging.getLogger(__name__)
def load_retriever_config(path: str) -> str:
with open(path, "r") as file:
yaml_string = file.read()
config = yaml.safe_load(yaml_string)
return yaml.dump(config)
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"
DEFAULT_MODEL_NAME = "ArneBinder/sam-pointer-bart-base-v0.3"
DEFAULT_MODEL_REVISION = "76300f8e534e2fcf695f00cb49bba166739b8d8a"
# local path
# DEFAULT_MODEL_NAME = "models/dataset-sciarg/task-ner_re/v0.3/2024-05-28_23-33-46"
# DEFAULT_MODEL_REVISION = None
DEFAULT_RETRIEVER_CONFIG = load_retriever_config(
"configs/retriever/related_span_retriever_with_relations_from_other_docs.yaml"
)
# 0.943180 from data_dir="predictions/default/2024-10-15_23-40-18"
DEFAULT_MIN_SIMILARITY = 0.95
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_SPLIT_REGEX = "\n\n\n+"
DEFAULT_ARXIV_ID = "1706.03762"
DEFAULT_LOAD_PIE_DATASET_KWARGS_STR = json.dumps(
dict(path="pie/sciarg", name="resolve_parts_of_same", split="train"), indent=2
)
# Whether to handle segmented entities in the document. If True, labeled_spans are converted
# to labeled_multi_spans and binary_relations with label "parts_of_same" are used to merge them.
# This requires the networkx package to be installed.
HANDLE_PARTS_OF_SAME = True
LAYER_CAPTIONS = {
"labeled_multi_spans": "adus",
"binary_relations": "relations",
"labeled_partitions": "partitions",
}
RELATION_NAME_MAPPING = {
"supports_reversed": "supported by",
"contradicts_reversed": "contradicts",
}
def escape_regex(regex: str) -> str:
# "double escape" the backslashes
result = regex.encode("unicode_escape").decode("utf-8")
return result
def unescape_regex(regex: str) -> str:
# reverse of escape_regex
result = regex.encode("utf-8").decode("unicode_escape")
return result
def get_document_as_dict(retriever: DocumentAwareSpanRetriever, doc_id: str) -> Dict:
document = retriever.get_document(doc_id=doc_id)
return retriever.docstore.as_dict(document)
def render_annotated_document(
retriever: DocumentAwareSpanRetrieverWithRelations,
document_id: str,
render_with: str,
render_kwargs_json: str,
) -> str:
text, spans, span_id2idx, relations = get_text_spans_and_relations_from_document(
retriever=retriever, document_id=document_id
)
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(
text=text,
spans=spans,
span_id2idx=span_id2idx,
binary_relations=relations,
**render_kwargs,
)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(
text=text,
spans=spans,
span_id2idx=span_id2idx,
binary_relations=relations,
**render_kwargs,
)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
def wrapped_process_text(
doc_id: str, text: str, retriever: DocumentAwareSpanRetriever, **kwargs
) -> str:
try:
process_texts(doc_ids=[doc_id], texts=[text], retriever=retriever, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process text: {e}")
# Return as dict and document to avoid serialization issues
return doc_id
def process_uploaded_files(
file_names: List[str], retriever: DocumentAwareSpanRetriever, **kwargs
) -> pd.DataFrame:
try:
doc_ids = []
texts = []
for file_name in file_names:
if file_name.lower().endswith(".txt"):
# read the file content
with open(file_name, "r", encoding="utf-8") as f:
text = f.read()
base_file_name = os.path.basename(file_name)
doc_ids.append(base_file_name)
texts.append(text)
else:
raise gr.Error(f"Unsupported file format: {file_name}")
process_texts(texts=texts, doc_ids=doc_ids, retriever=retriever, verbose=True, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
return retriever.docstore.overview(layer_captions=LAYER_CAPTIONS, use_predictions=True)
def wrapped_add_annotated_pie_documents_from_dataset(
retriever: DocumentAwareSpanRetriever, verbose: bool, **kwargs
) -> pd.DataFrame:
try:
add_annotated_pie_documents_from_dataset(retriever=retriever, verbose=verbose, **kwargs)
except Exception as e:
raise gr.Error(f"Failed to add annotated PIE documents from dataset: {e}")
return retriever.docstore.overview(layer_captions=LAYER_CAPTIONS, use_predictions=True)
def open_accordion():
return gr.Accordion(open=True)
def close_accordion():
return gr.Accordion(open=False)
def get_cell_for_fixed_column_from_df(
evt: gr.SelectData,
df: pd.DataFrame,
column: str,
) -> Any:
"""Get the value of the fixed column for the selected row in the DataFrame.
This is required can *not* with a lambda function because that will not get
the evt parameter.
Args:
evt: The event object.
df: The DataFrame.
column: The name of the column.
Returns:
The value of the fixed column for the selected row.
"""
row_idx, col_idx = evt.index
doc_id = df.iloc[row_idx][column]
return doc_id
def set_relation_types(
argumentation_model: Pipeline,
default: Optional[List[str]] = None,
) -> gr.Dropdown:
if isinstance(argumentation_model.taskmodule, PointerNetworkTaskModuleForEnd2EndRE):
relation_types = argumentation_model.taskmodule.labels_per_layer["binary_relations"]
else:
raise gr.Error("Unsupported taskmodule for relation types")
return gr.Dropdown(
choices=relation_types,
label="Argumentative Relation Types",
value=default,
multiselect=True,
)
def get_span_annotation(
retriever: DocumentAwareSpanRetriever,
span_id: str,
) -> Annotation:
if span_id.strip() == "":
raise gr.Error("No span selected.")
try:
return retriever.get_span_by_id(span_id=span_id)
except Exception as e:
raise gr.Error(f"Failed to retrieve span annotation: {e}")
def get_text_spans_and_relations_from_document(
retriever: DocumentAwareSpanRetrieverWithRelations, document_id: str
) -> Tuple[
str,
Union[Sequence[LabeledSpan], Sequence[LabeledMultiSpan]],
Dict[str, int],
Sequence[BinaryRelation],
]:
document = retriever.get_document(doc_id=document_id)
pie_document = retriever.docstore.unwrap(document)
use_predicted_annotations = retriever.use_predicted_annotations(document)
spans = retriever.get_base_layer(
pie_document=pie_document, use_predicted_annotations=use_predicted_annotations
)
relations = retriever.get_relation_layer(
pie_document=pie_document, use_predicted_annotations=use_predicted_annotations
)
span_id2idx = retriever.get_span_id2idx_from_doc(document)
return pie_document.text, spans, span_id2idx, relations
def download_processed_documents(
retriever: DocumentAwareSpanRetriever,
file_name: str = "retriever_store",
) -> Optional[str]:
if len(retriever.docstore) == 0:
gr.Warning("No documents to download.")
return None
# zip the directory
file_path = os.path.join(tempfile.gettempdir(), file_name)
gr.Info(f"Zipping the retriever store to '{file_name}' ...")
result_file_path = retriever.save_to_archive(base_name=file_path, format="zip")
return result_file_path
def upload_processed_documents(
file_name: str,
retriever: DocumentAwareSpanRetriever,
) -> pd.DataFrame:
# load the documents from the zip file or directory
retriever.load_from_disc(file_name)
# return the overview of the document store
return retriever.docstore.overview(layer_captions=LAYER_CAPTIONS, use_predictions=True)
def clean_spaces(text: str) -> str:
# replace all multiple spaces with a single space
text = re.sub(" +", " ", text)
# reduce more than two newlines to two newlines
text = re.sub("\n\n+", "\n\n", text)
# remove leading and trailing whitespaces
text = text.strip()
return text
def get_cleaned_arxiv_paper_text(html_content: str) -> str:
# parse the HTML content with BeautifulSoup
soup = BeautifulSoup(html_content, "html.parser")
# get alerts (this is one div with classes "package-alerts" and "ltx_document")
alerts = soup.find("div", class_="package-alerts ltx_document")
# get the "article" html element
article = soup.find("article")
article_text = article.get_text()
# cleanup the text
article_text_clean = clean_spaces(article_text)
return article_text_clean
def load_text_from_arxiv(arxiv_id: str, abstract_only: bool = False) -> Tuple[str, str]:
arxiv_id = arxiv_id.strip()
if not arxiv_id:
arxiv_id = DEFAULT_ARXIV_ID
search_by_id = arxiv.Search(id_list=[arxiv_id])
try:
result = list(arxiv.Client().results(search_by_id))
except arxiv.HTTPError as e:
raise gr.Error(f"Failed to fetch arXiv data: {e}")
if len(result) == 0:
raise gr.Error(f"Could not find any paper with arXiv ID '{arxiv_id}'")
first_result = result[0]
if abstract_only:
abstract_clean = first_result.summary.replace("\n", " ")
return abstract_clean, first_result.entry_id
if "/abs/" not in first_result.entry_id:
raise gr.Error(
f"Could not create the HTML URL for arXiv ID '{arxiv_id}' because its entry ID has "
f"an unexpected format: {first_result.entry_id}"
)
html_url = first_result.entry_id.replace("/abs/", "/html/")
request_result = requests.get(html_url)
if request_result.status_code != 200:
raise gr.Error(
f"Could not fetch the HTML content for arXiv ID '{arxiv_id}', status code: "
f"{request_result.status_code}"
)
html_content = request_result.text
text_clean = get_cleaned_arxiv_paper_text(html_content)
return text_clean, html_url
def process_text_from_arxiv(
arxiv_id: str, retriever: DocumentAwareSpanRetriever, abstract_only: bool = False, **kwargs
) -> str:
try:
text, doc_id = load_text_from_arxiv(arxiv_id=arxiv_id, abstract_only=abstract_only)
except Exception as e:
raise gr.Error(f"Failed to load text from arXiv: {e}")
return wrapped_process_text(doc_id=doc_id, text=text, retriever=retriever, **kwargs)
def main():
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."
print("Loading argumentation model ...")
argumentation_model = load_argumentation_model(
model_name=DEFAULT_MODEL_NAME,
revision=DEFAULT_MODEL_REVISION,
device=DEFAULT_DEVICE,
)
print("Loading retriever ...")
retriever = load_retriever(
DEFAULT_RETRIEVER_CONFIG, device=DEFAULT_DEVICE, config_format="yaml"
)
print("Models loaded.")
default_render_kwargs = {
"entity_options": {
# we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
"colors": {
"own_claim".upper(): "#009933",
"background_claim".upper(): "#99ccff",
"data".upper(): "#993399",
}
},
"colors_hover": {
"selected": "#ffa",
# "tail": "#aff",
"tail": {
# green
"supports": "#9f9",
# red
"contradicts": "#f99",
# do not highlight
"parts_of_same": None,
},
"head": None, # "#faf",
"other": None,
},
}
with gr.Blocks() as demo:
# wrap the pipeline and the embedding model/tokenizer in a tuple to avoid that it gets called
# models_state = gr.State((argumentation_model, embedding_model))
argumentation_model_state = gr.State((argumentation_model,))
retriever_state = gr.State((retriever,))
with gr.Row():
with gr.Column(scale=1):
doc_id = gr.Textbox(
label="Document ID",
value="user_input",
)
doc_text = gr.Textbox(
label="Text",
lines=20,
value=example_text,
)
with gr.Accordion("Model Configuration", open=False):
with gr.Accordion("argumentation structure", open=True):
model_name = gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
)
model_revision = gr.Textbox(
label="Model Revision",
value=DEFAULT_MODEL_REVISION,
)
load_arg_model_btn = gr.Button("Load Argumentation Model")
with gr.Accordion("retriever", open=True):
retriever_config = gr.Textbox(
label="Retriever Configuration",
placeholder="Configuration for the retriever",
value=DEFAULT_RETRIEVER_CONFIG,
lines=len(DEFAULT_RETRIEVER_CONFIG.split("\n")),
)
load_retriever_btn = gr.Button("Load Retriever")
device = gr.Textbox(
label="Device (e.g. 'cuda' or 'cpu')",
value=DEFAULT_DEVICE,
)
load_arg_model_btn.click(
fn=lambda _model_name, _model_revision, _device: (
load_argumentation_model(
model_name=_model_name, revision=_model_revision, device=_device
),
),
inputs=[model_name, model_revision, device],
outputs=argumentation_model_state,
)
load_retriever_btn.click(
fn=lambda _retriever_config, _device, _previous_retriever: (
load_retriever(
retriever_config=_retriever_config,
device=_device,
previous_retriever=_previous_retriever[0],
config_format="yaml",
),
),
inputs=[retriever_config, device, retriever_state],
outputs=retriever_state,
)
split_regex_escaped = gr.Textbox(
label="Regex to partition the text",
placeholder="Regular expression pattern to split the text into partitions",
value=escape_regex(DEFAULT_SPLIT_REGEX),
)
predict_btn = gr.Button("Analyse")
with gr.Column(scale=1):
selected_document_id = gr.Textbox(
label="Selected Document", max_lines=1, interactive=False
)
rendered_output = gr.HTML(label="Rendered Output")
with gr.Accordion("Render Options", open=False):
render_as = gr.Dropdown(
label="Render with",
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
value=RENDER_WITH_DISPLACY,
)
render_kwargs = gr.Textbox(
label="Render Arguments",
lines=5,
value=json.dumps(default_render_kwargs, indent=2),
)
render_btn = gr.Button("Re-render")
with gr.Accordion("See plain result ...", open=False) as document_json_accordion:
get_document_json_btn = gr.Button("Fetch annotated document as JSON")
document_json = gr.JSON(label="Model Output")
with gr.Column(scale=1):
with gr.Accordion(
"Indexed Documents", open=False
) as processed_documents_accordion:
processed_documents_df = gr.DataFrame(
headers=["id", "num_adus", "num_relations"],
interactive=False,
)
gr.Markdown("Data Snapshot:")
with gr.Row():
download_processed_documents_btn = gr.DownloadButton("Download")
upload_processed_documents_btn = gr.UploadButton(
"Upload", file_types=["file"]
)
upload_btn = gr.UploadButton(
"Upload & Analyse Reference Documents",
file_types=["text"],
file_count="multiple",
)
with gr.Accordion("Import text from arXiv", open=False):
arxiv_id = gr.Textbox(
label="arXiv paper ID",
placeholder=f"e.g. {DEFAULT_ARXIV_ID}",
max_lines=1,
)
load_arxiv_only_abstract = gr.Checkbox(label="abstract only", value=False)
load_arxiv_btn = gr.Button("Load & process from arXiv", variant="secondary")
with gr.Accordion("Import annotated PIE dataset", open=False):
load_pie_dataset_kwargs_str = gr.Textbox(
label="Parameters for Loading the PIE Dataset",
value=DEFAULT_LOAD_PIE_DATASET_KWARGS_STR,
lines=len(DEFAULT_LOAD_PIE_DATASET_KWARGS_STR.split("\n")),
)
load_pie_dataset_btn = gr.Button("Load & Embed PIE Dataset")
with gr.Accordion("Retrieval Configuration", open=False):
min_similarity = gr.Slider(
label="Minimum Similarity",
minimum=0.0,
maximum=1.0,
step=0.01,
value=DEFAULT_MIN_SIMILARITY,
)
top_k = gr.Slider(
label="Top K",
minimum=2,
maximum=50,
step=1,
value=10,
)
retrieve_similar_adus_btn = gr.Button(
"Retrieve *similar* ADUs for *selected* ADU"
)
similar_adus_df = gr.DataFrame(
headers=["doc_id", "adu_id", "score", "text"], interactive=False
)
retrieve_all_similar_adus_btn = gr.Button(
"Retrieve *similar* ADUs for *all* ADUs in the document"
)
all_similar_adus_df = gr.DataFrame(
headers=["doc_id", "query_adu_id", "adu_id", "score", "text"],
interactive=False,
)
retrieve_all_relevant_adus_btn = gr.Button(
"Retrieve *relevant* ADUs for *all* ADUs in the document"
)
all_relevant_adus_df = gr.DataFrame(
headers=["doc_id", "adu_id", "score", "text"], interactive=False
)
# currently not used
# relation_types = set_relation_types(
# argumentation_model_state.value[0], default=["supports_reversed", "contradicts_reversed"]
# )
# Dummy textbox to hold the hover adu id. On click on the rendered output,
# its content will be copied to selected_adu_id which will trigger the retrieval.
hover_adu_id = gr.Textbox(
label="ID (hover)",
elem_id="hover_adu_id",
interactive=False,
visible=False,
)
selected_adu_id = gr.Textbox(
label="ID (selected)",
elem_id="selected_adu_id",
interactive=False,
visible=False,
)
selected_adu_text = gr.Textbox(label="Selected ADU", interactive=False)
with gr.Accordion("Relevant ADUs from other documents", open=True):
relevant_adus_df = gr.DataFrame(
headers=[
"relation",
"adu",
"reference_adu",
"doc_id",
"sim_score",
"rel_score",
],
interactive=False,
)
render_event_kwargs = dict(
fn=lambda _retriever, _document_id, _render_as, _render_kwargs: render_annotated_document(
retriever=_retriever[0],
document_id=_document_id,
render_with=_render_as,
render_kwargs_json=_render_kwargs,
),
inputs=[retriever_state, selected_document_id, render_as, render_kwargs],
outputs=rendered_output,
)
show_overview_kwargs = dict(
fn=lambda _retriever: _retriever[0].docstore.overview(
layer_captions=LAYER_CAPTIONS, use_predictions=True
),
inputs=[retriever_state],
outputs=[processed_documents_df],
)
predict_btn.click(
fn=lambda _doc_text, _doc_id, _argumentation_model, _retriever, _split_regex_escaped: wrapped_process_text(
text=_doc_text,
doc_id=_doc_id,
argumentation_model=_argumentation_model[0],
retriever=_retriever[0],
split_regex_escaped=(
unescape_regex(_split_regex_escaped) if _split_regex_escaped else None
),
handle_parts_of_same=HANDLE_PARTS_OF_SAME,
),
inputs=[
doc_text,
doc_id,
argumentation_model_state,
retriever_state,
split_regex_escaped,
],
outputs=[selected_document_id],
api_name="predict",
).success(**show_overview_kwargs).success(**render_event_kwargs)
render_btn.click(**render_event_kwargs, api_name="render")
load_arxiv_btn.click(
fn=lambda _arxiv_id, _load_arxiv_only_abstract, _argumentation_model, _retriever, _split_regex_escaped: process_text_from_arxiv(
arxiv_id=_arxiv_id,
abstract_only=_load_arxiv_only_abstract,
argumentation_model=_argumentation_model[0],
retriever=_retriever[0],
split_regex_escaped=(
unescape_regex(_split_regex_escaped) if _split_regex_escaped else None
),
handle_parts_of_same=HANDLE_PARTS_OF_SAME,
),
inputs=[
arxiv_id,
load_arxiv_only_abstract,
argumentation_model_state,
retriever_state,
split_regex_escaped,
],
outputs=[selected_document_id],
api_name="predict",
).success(**show_overview_kwargs)
load_pie_dataset_btn.click(
fn=open_accordion, inputs=[], outputs=[processed_documents_accordion]
).then(
fn=lambda _retriever, _load_pie_dataset_kwargs_str: wrapped_add_annotated_pie_documents_from_dataset(
retriever=_retriever[0], verbose=True, **json.loads(_load_pie_dataset_kwargs_str)
),
inputs=[retriever_state, load_pie_dataset_kwargs_str],
outputs=[processed_documents_df],
)
selected_document_id.change(**render_event_kwargs)
get_document_json_btn.click(
fn=lambda _retriever, _document_id: get_document_as_dict(
retriever=_retriever[0], doc_id=_document_id
),
inputs=[retriever_state, selected_document_id],
outputs=[document_json],
)
upload_btn.upload(
fn=open_accordion, inputs=[], outputs=[processed_documents_accordion]
).then(
fn=lambda _file_names, _argumentation_model, _retriever, _split_regex_escaped: process_uploaded_files(
file_names=_file_names,
argumentation_model=_argumentation_model[0],
retriever=_retriever[0],
split_regex_escaped=unescape_regex(_split_regex_escaped),
handle_parts_of_same=HANDLE_PARTS_OF_SAME,
),
inputs=[
upload_btn,
argumentation_model_state,
retriever_state,
split_regex_escaped,
],
outputs=[processed_documents_df],
)
processed_documents_df.select(
fn=get_cell_for_fixed_column_from_df,
inputs=[processed_documents_df, gr.State("doc_id")],
outputs=[selected_document_id],
)
download_processed_documents_btn.click(
fn=lambda _retriever: download_processed_documents(
_retriever[0], file_name="processed_documents"
),
inputs=[retriever_state],
outputs=[download_processed_documents_btn],
)
upload_processed_documents_btn.upload(
fn=lambda file_name, _retriever: upload_processed_documents(
file_name, retriever=_retriever[0]
),
inputs=[upload_processed_documents_btn, retriever_state],
outputs=[processed_documents_df],
)
retrieve_relevant_adus_event_kwargs = dict(
fn=lambda _retriever, _selected_adu_id, _min_similarity, _top_k: retrieve_relevant_spans(
retriever=_retriever[0],
query_span_id=_selected_adu_id,
k=_top_k,
score_threshold=_min_similarity,
relation_label_mapping=RELATION_NAME_MAPPING,
# columns=relevant_adus.headers
),
inputs=[
retriever_state,
selected_adu_id,
min_similarity,
top_k,
],
outputs=[relevant_adus_df],
)
relevant_adus_df.select(
fn=get_cell_for_fixed_column_from_df,
inputs=[relevant_adus_df, gr.State("doc_id")],
outputs=[selected_document_id],
)
selected_adu_id.change(
fn=lambda _retriever, _selected_adu_id: get_span_annotation(
retriever=_retriever[0], span_id=_selected_adu_id
),
inputs=[retriever_state, selected_adu_id],
outputs=[selected_adu_text],
).success(**retrieve_relevant_adus_event_kwargs)
retrieve_similar_adus_btn.click(
fn=lambda _retriever, _selected_adu_id, _min_similarity, _tok_k: retrieve_similar_spans(
retriever=_retriever[0],
query_span_id=_selected_adu_id,
k=_tok_k,
score_threshold=_min_similarity,
),
inputs=[
retriever_state,
selected_adu_id,
min_similarity,
top_k,
],
outputs=[similar_adus_df],
)
similar_adus_df.select(
fn=get_cell_for_fixed_column_from_df,
inputs=[similar_adus_df, gr.State("doc_id")],
outputs=[selected_document_id],
)
retrieve_all_similar_adus_btn.click(
fn=lambda _retriever, _document_id, _min_similarity, _tok_k: retrieve_all_similar_spans(
retriever=_retriever[0],
query_doc_id=_document_id,
k=_tok_k,
score_threshold=_min_similarity,
query_span_id_column="query_span_id",
),
inputs=[
retriever_state,
selected_document_id,
min_similarity,
top_k,
],
outputs=[all_similar_adus_df],
)
retrieve_all_relevant_adus_btn.click(
fn=lambda _retriever, _document_id, _min_similarity, _tok_k: retrieve_all_relevant_spans(
retriever=_retriever[0],
query_doc_id=_document_id,
k=_tok_k,
score_threshold=_min_similarity,
query_span_id_column="query_span_id",
),
inputs=[
retriever_state,
selected_document_id,
min_similarity,
top_k,
],
outputs=[all_relevant_adus_df],
)
# select query span id from the "retrieve all" result data frames
all_similar_adus_df.select(
fn=get_cell_for_fixed_column_from_df,
inputs=[all_similar_adus_df, gr.State("query_span_id")],
outputs=[selected_adu_id],
)
all_relevant_adus_df.select(
fn=get_cell_for_fixed_column_from_df,
inputs=[all_relevant_adus_df, gr.State("query_span_id")],
outputs=[selected_adu_id],
)
# argumentation_model_state.change(
# fn=lambda _argumentation_model: set_relation_types(_argumentation_model[0]),
# inputs=[argumentation_model_state],
# outputs=[relation_types],
# )
rendered_output.change(fn=None, js=HIGHLIGHT_SPANS_JS, inputs=[], outputs=[])
demo.launch()
if __name__ == "__main__":
# configure logging
logging.basicConfig()
main()
|