File size: 9,948 Bytes
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from collections.abc import Iterable

import pyrootutils
from pytorch_ie import Document

root = pyrootutils.setup_root(
    search_from=__file__,
    indicator=[".project-root"],
    pythonpath=True,
    dotenv=True,
)

import argparse
from functools import partial
from typing import Callable, List, Optional, Union

import pandas as pd
from pie_datasets import Dataset, load_dataset
from pie_datasets.builders.brat import BratDocument, BratDocumentWithMergedSpans
from pie_modules.document.processing import RelationArgumentSorter, SpansViaRelationMerger
from pytorch_ie.metrics import F1Metric

from src.document.processing import align_predicted_span_annotations


def add_annotations_as_predictions(document: BratDocument, other: BratDocument) -> BratDocument:
    document = document.copy()
    other = other.copy()
    document.spans.predictions.extend(other.spans.clear())
    gold2gold_span_mapping = {span: span for span in document.spans}
    predicted2maybe_gold_span = {}
    for span in document.spans.predictions:
        predicted2maybe_gold_span[span] = gold2gold_span_mapping.get(span, span)
    predicted_relations = [
        rel.copy(
            head=predicted2maybe_gold_span[rel.head], tail=predicted2maybe_gold_span[rel.tail]
        )
        for rel in other.relations.clear()
    ]
    document.relations.predictions.extend(predicted_relations)
    return document


def remove_annotations_existing_in_other(
    document: BratDocumentWithMergedSpans, other: BratDocumentWithMergedSpans
) -> BratDocumentWithMergedSpans:
    result = document.copy(with_annotations=False)
    document = document.copy()
    other = other.copy()

    spans = set(document.spans.clear()) - set(other.spans.clear())
    relations = set(document.relations.clear()) - set(other.relations.clear())
    result.spans.extend(spans)
    result.relations.extend(relations)

    return result


def unnest_dict(d):
    result = {}
    for key, value in d.items():
        if isinstance(value, dict):
            unnested = unnest_dict(value)
            for k, v in unnested.items():
                result[(key,) + k] = v
        else:
            result[(key,)] = value
    return result


def calc_brat_iaas(
    annotator_dirs: List[str],
    ignore_annotation_dir: Optional[str] = None,
    combine_fragmented_spans_via_relation: Optional[str] = None,
    sort_arguments_of_relations: Optional[List[str]] = None,
    align_spans: bool = False,
    show_results: bool = False,
    per_file: bool = False,
) -> Union[pd.Series, List[pd.Series]]:
    if len(annotator_dirs) < 2:
        raise ValueError("At least two annotation dirs must be provided")

    span_aligner = None
    if align_spans:
        span_aligner = partial(align_predicted_span_annotations, span_layer="spans")

    if combine_fragmented_spans_via_relation is not None:
        print(f"Combine fragmented spans via {combine_fragmented_spans_via_relation} relations")
        merger = SpansViaRelationMerger(
            relation_layer="relations",
            link_relation_label=combine_fragmented_spans_via_relation,
            create_multi_spans=True,
            result_document_type=BratDocument,
            result_field_mapping={"spans": "spans", "relations": "relations"},
            combine_scores_method="product",
        )
    else:
        merger = None

    if sort_arguments_of_relations is not None and len(sort_arguments_of_relations) > 0:
        print(f"Sort arguments of relations with labels {sort_arguments_of_relations}")
        relation_argument_sorter = RelationArgumentSorter(
            relation_layer="relations",
            label_whitelist=sort_arguments_of_relations,  # ["parts_of_same", "semantically_same", "contradicts"],
        )
    else:
        relation_argument_sorter = None

    all_docs = [
        load_dataset(
            "pie/brat",
            name="merge_fragmented_spans",
            base_dataset_kwargs=dict(data_dir=annotation_dir),
            split="train",
        ).map(lambda doc: doc.deduplicate_annotations())
        for annotation_dir in annotator_dirs
    ]

    if ignore_annotation_dir is not None:
        print(f"Ignoring annotations loaded from {ignore_annotation_dir}")
        ignore_annotation_docs = load_dataset(
            "pie/brat",
            name="merge_fragmented_spans",
            base_dataset_kwargs=dict(data_dir=ignore_annotation_dir),
            split="train",
        )
        ignore_annotation_docs_dict = {doc.id: doc for doc in ignore_annotation_docs}
        all_docs = [
            docs.map(
                lambda doc: remove_annotations_existing_in_other(
                    doc, other=ignore_annotation_docs_dict[doc.id]
                )
            )
            for docs in all_docs
        ]

    if relation_argument_sorter is not None:
        all_docs = [docs.map(relation_argument_sorter) for docs in all_docs]

    if per_file:
        results_per_doc = []
        for docs_tuple in zip(*all_docs):
            if show_results:
                print(f"\ncalculate scores for document id={docs_tuple[0].id} ...")
            docs = [Dataset.from_documents([doc]) for doc in docs_tuple]
            result_per_doc = calc_brat_iaas_for_docs(
                docs, span_aligner=span_aligner, merger=merger, show_results=show_results
            )
            results_per_doc.append(result_per_doc)
        return results_per_doc

    else:
        return calc_brat_iaas_for_docs(
            all_docs, span_aligner=span_aligner, merger=merger, show_results=show_results
        )


def calc_brat_iaas_for_docs(
    all_docs: List[Dataset],
    span_aligner: Optional[Callable] = None,
    merger: Optional[Callable] = None,
    show_results: bool = False,
) -> pd.Series:
    num_annotators = len(all_docs)
    all_docs_dict = [{doc.id: doc for doc in docs} for docs in all_docs]
    gold_predicted = {}
    for gold_annotator_idx in range(num_annotators):
        gold = all_docs[gold_annotator_idx]
        for predicted_annotator_idx in range(num_annotators):
            if gold_annotator_idx == predicted_annotator_idx:
                continue
            predicted_dict = all_docs_dict[predicted_annotator_idx]
            gold_predicted[(gold_annotator_idx, predicted_annotator_idx)] = gold.map(
                lambda doc: add_annotations_as_predictions(doc, other=predicted_dict[doc.id])
            )

    spans_metric = F1Metric(layer="spans", labels="INFERRED", show_as_markdown=True)
    relations_metric = F1Metric(layer="relations", labels="INFERRED", show_as_markdown=True)

    metric_values = {}
    for gold_annotator_idx, predicted_annotator_idx in gold_predicted:
        print(
            f"calculate scores for annotations {gold_annotator_idx} -> {predicted_annotator_idx}"
        )
        for doc in gold_predicted[(gold_annotator_idx, predicted_annotator_idx)]:
            if span_aligner is not None:
                doc = span_aligner(doc)
            if merger is not None:
                doc = merger(doc)
            spans_metric(doc)
            relations_metric(doc)
        metric_id = f"gold:{gold_annotator_idx},predicted:{predicted_annotator_idx}"
        metric_values[metric_id] = {
            "spans": spans_metric.compute(reset=True),
            "relations": relations_metric.compute(reset=True),
        }

    result = pd.Series(unnest_dict(metric_values))
    if show_results:
        metric_values_series_mean = result.unstack(0).mean(axis=1)
        metric_values_relations = metric_values_series_mean.xs("relations").unstack()
        metric_values_spans = metric_values_series_mean.xs("spans").unstack()

        print("\nspans:")
        print(metric_values_spans.round(decimals=3).to_markdown())

        print("\nrelations:")
        print(metric_values_relations.round(decimals=3).to_markdown())

    return result


if __name__ == "__main__":

    """
    example call:
    python calc_iaa_for_brat.py \
    --annotation-dirs annotations/sciarg/v0.9/with_abstracts_rin annotations/sciarg/v0.9/with_abstracts_alisa \
    --ignore-annotation-dir annotations/sciarg/v0.9/original
    """

    parser = argparse.ArgumentParser(
        description="Calculate inter-annotator agreement for spans and relations in means of F1 "
        "(exact match, i.e. offsets / arguments and labels must match) for two or more BRAT "
        "annotation directories."
    )
    parser.add_argument(
        "--annotation-dirs",
        type=str,
        required=True,
        nargs="+",
        help="List of annotation directories. At least two directories must be provided.",
    )
    parser.add_argument(
        "--ignore-annotation-dir",
        type=str,
        default=None,
        help="If set, ignore annotations loaded from this directory.",
    )
    parser.add_argument(
        "--combine-fragmented-spans-via-relation",
        type=str,
        default=None,
        help="If set, combine fragmented spans via this relation type.",
    )
    parser.add_argument(
        "--sort-arguments-of-relations",
        type=str,
        default=None,
        nargs="+",
        help="If set, sort the arguments of the relations with the given labels.",
    )
    parser.add_argument(
        "--align-spans",
        action="store_true",
        help="If set, align the spans of the predicted annotations to the gold annotations.",
    )
    parser.add_argument(
        "--per-file",
        action="store_true",
        help="If set, calculate IAA per file.",
    )
    args = parser.parse_args()

    metric_values_series = calc_brat_iaas(
        annotator_dirs=args.annotation_dirs,
        ignore_annotation_dir=args.ignore_annotation_dir,
        combine_fragmented_spans_via_relation=args.combine_fragmented_spans_via_relation,
        sort_arguments_of_relations=args.sort_arguments_of_relations,
        align_spans=args.align_spans,
        per_file=args.per_file,
        show_results=True,
    )