File size: 9,948 Bytes
ced4316 e7eaeed ced4316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from collections.abc import Iterable
import pyrootutils
from pytorch_ie import Document
root = pyrootutils.setup_root(
search_from=__file__,
indicator=[".project-root"],
pythonpath=True,
dotenv=True,
)
import argparse
from functools import partial
from typing import Callable, List, Optional, Union
import pandas as pd
from pie_datasets import Dataset, load_dataset
from pie_datasets.builders.brat import BratDocument, BratDocumentWithMergedSpans
from pie_modules.document.processing import RelationArgumentSorter, SpansViaRelationMerger
from pytorch_ie.metrics import F1Metric
from src.document.processing import align_predicted_span_annotations
def add_annotations_as_predictions(document: BratDocument, other: BratDocument) -> BratDocument:
document = document.copy()
other = other.copy()
document.spans.predictions.extend(other.spans.clear())
gold2gold_span_mapping = {span: span for span in document.spans}
predicted2maybe_gold_span = {}
for span in document.spans.predictions:
predicted2maybe_gold_span[span] = gold2gold_span_mapping.get(span, span)
predicted_relations = [
rel.copy(
head=predicted2maybe_gold_span[rel.head], tail=predicted2maybe_gold_span[rel.tail]
)
for rel in other.relations.clear()
]
document.relations.predictions.extend(predicted_relations)
return document
def remove_annotations_existing_in_other(
document: BratDocumentWithMergedSpans, other: BratDocumentWithMergedSpans
) -> BratDocumentWithMergedSpans:
result = document.copy(with_annotations=False)
document = document.copy()
other = other.copy()
spans = set(document.spans.clear()) - set(other.spans.clear())
relations = set(document.relations.clear()) - set(other.relations.clear())
result.spans.extend(spans)
result.relations.extend(relations)
return result
def unnest_dict(d):
result = {}
for key, value in d.items():
if isinstance(value, dict):
unnested = unnest_dict(value)
for k, v in unnested.items():
result[(key,) + k] = v
else:
result[(key,)] = value
return result
def calc_brat_iaas(
annotator_dirs: List[str],
ignore_annotation_dir: Optional[str] = None,
combine_fragmented_spans_via_relation: Optional[str] = None,
sort_arguments_of_relations: Optional[List[str]] = None,
align_spans: bool = False,
show_results: bool = False,
per_file: bool = False,
) -> Union[pd.Series, List[pd.Series]]:
if len(annotator_dirs) < 2:
raise ValueError("At least two annotation dirs must be provided")
span_aligner = None
if align_spans:
span_aligner = partial(align_predicted_span_annotations, span_layer="spans")
if combine_fragmented_spans_via_relation is not None:
print(f"Combine fragmented spans via {combine_fragmented_spans_via_relation} relations")
merger = SpansViaRelationMerger(
relation_layer="relations",
link_relation_label=combine_fragmented_spans_via_relation,
create_multi_spans=True,
result_document_type=BratDocument,
result_field_mapping={"spans": "spans", "relations": "relations"},
combine_scores_method="product",
)
else:
merger = None
if sort_arguments_of_relations is not None and len(sort_arguments_of_relations) > 0:
print(f"Sort arguments of relations with labels {sort_arguments_of_relations}")
relation_argument_sorter = RelationArgumentSorter(
relation_layer="relations",
label_whitelist=sort_arguments_of_relations, # ["parts_of_same", "semantically_same", "contradicts"],
)
else:
relation_argument_sorter = None
all_docs = [
load_dataset(
"pie/brat",
name="merge_fragmented_spans",
base_dataset_kwargs=dict(data_dir=annotation_dir),
split="train",
).map(lambda doc: doc.deduplicate_annotations())
for annotation_dir in annotator_dirs
]
if ignore_annotation_dir is not None:
print(f"Ignoring annotations loaded from {ignore_annotation_dir}")
ignore_annotation_docs = load_dataset(
"pie/brat",
name="merge_fragmented_spans",
base_dataset_kwargs=dict(data_dir=ignore_annotation_dir),
split="train",
)
ignore_annotation_docs_dict = {doc.id: doc for doc in ignore_annotation_docs}
all_docs = [
docs.map(
lambda doc: remove_annotations_existing_in_other(
doc, other=ignore_annotation_docs_dict[doc.id]
)
)
for docs in all_docs
]
if relation_argument_sorter is not None:
all_docs = [docs.map(relation_argument_sorter) for docs in all_docs]
if per_file:
results_per_doc = []
for docs_tuple in zip(*all_docs):
if show_results:
print(f"\ncalculate scores for document id={docs_tuple[0].id} ...")
docs = [Dataset.from_documents([doc]) for doc in docs_tuple]
result_per_doc = calc_brat_iaas_for_docs(
docs, span_aligner=span_aligner, merger=merger, show_results=show_results
)
results_per_doc.append(result_per_doc)
return results_per_doc
else:
return calc_brat_iaas_for_docs(
all_docs, span_aligner=span_aligner, merger=merger, show_results=show_results
)
def calc_brat_iaas_for_docs(
all_docs: List[Dataset],
span_aligner: Optional[Callable] = None,
merger: Optional[Callable] = None,
show_results: bool = False,
) -> pd.Series:
num_annotators = len(all_docs)
all_docs_dict = [{doc.id: doc for doc in docs} for docs in all_docs]
gold_predicted = {}
for gold_annotator_idx in range(num_annotators):
gold = all_docs[gold_annotator_idx]
for predicted_annotator_idx in range(num_annotators):
if gold_annotator_idx == predicted_annotator_idx:
continue
predicted_dict = all_docs_dict[predicted_annotator_idx]
gold_predicted[(gold_annotator_idx, predicted_annotator_idx)] = gold.map(
lambda doc: add_annotations_as_predictions(doc, other=predicted_dict[doc.id])
)
spans_metric = F1Metric(layer="spans", labels="INFERRED", show_as_markdown=True)
relations_metric = F1Metric(layer="relations", labels="INFERRED", show_as_markdown=True)
metric_values = {}
for gold_annotator_idx, predicted_annotator_idx in gold_predicted:
print(
f"calculate scores for annotations {gold_annotator_idx} -> {predicted_annotator_idx}"
)
for doc in gold_predicted[(gold_annotator_idx, predicted_annotator_idx)]:
if span_aligner is not None:
doc = span_aligner(doc)
if merger is not None:
doc = merger(doc)
spans_metric(doc)
relations_metric(doc)
metric_id = f"gold:{gold_annotator_idx},predicted:{predicted_annotator_idx}"
metric_values[metric_id] = {
"spans": spans_metric.compute(reset=True),
"relations": relations_metric.compute(reset=True),
}
result = pd.Series(unnest_dict(metric_values))
if show_results:
metric_values_series_mean = result.unstack(0).mean(axis=1)
metric_values_relations = metric_values_series_mean.xs("relations").unstack()
metric_values_spans = metric_values_series_mean.xs("spans").unstack()
print("\nspans:")
print(metric_values_spans.round(decimals=3).to_markdown())
print("\nrelations:")
print(metric_values_relations.round(decimals=3).to_markdown())
return result
if __name__ == "__main__":
"""
example call:
python calc_iaa_for_brat.py \
--annotation-dirs annotations/sciarg/v0.9/with_abstracts_rin annotations/sciarg/v0.9/with_abstracts_alisa \
--ignore-annotation-dir annotations/sciarg/v0.9/original
"""
parser = argparse.ArgumentParser(
description="Calculate inter-annotator agreement for spans and relations in means of F1 "
"(exact match, i.e. offsets / arguments and labels must match) for two or more BRAT "
"annotation directories."
)
parser.add_argument(
"--annotation-dirs",
type=str,
required=True,
nargs="+",
help="List of annotation directories. At least two directories must be provided.",
)
parser.add_argument(
"--ignore-annotation-dir",
type=str,
default=None,
help="If set, ignore annotations loaded from this directory.",
)
parser.add_argument(
"--combine-fragmented-spans-via-relation",
type=str,
default=None,
help="If set, combine fragmented spans via this relation type.",
)
parser.add_argument(
"--sort-arguments-of-relations",
type=str,
default=None,
nargs="+",
help="If set, sort the arguments of the relations with the given labels.",
)
parser.add_argument(
"--align-spans",
action="store_true",
help="If set, align the spans of the predicted annotations to the gold annotations.",
)
parser.add_argument(
"--per-file",
action="store_true",
help="If set, calculate IAA per file.",
)
args = parser.parse_args()
metric_values_series = calc_brat_iaas(
annotator_dirs=args.annotation_dirs,
ignore_annotation_dir=args.ignore_annotation_dir,
combine_fragmented_spans_via_relation=args.combine_fragmented_spans_via_relation,
sort_arguments_of_relations=args.sort_arguments_of_relations,
align_spans=args.align_spans,
per_file=args.per_file,
show_results=True,
)
|