File size: 8,835 Bytes
ced4316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import pyrootutils
root = pyrootutils.setup_root(
search_from=__file__,
indicator=[".project-root"],
pythonpath=True,
# dotenv=True,
)
import argparse
import logging
import os
from collections import defaultdict
from typing import List, Optional, Sequence, Tuple, TypeVar
import pandas as pd
from pie_datasets import load_dataset
from pie_datasets.builders.brat import BratDocument, BratDocumentWithMergedSpans
from pytorch_ie.annotations import LabeledMultiSpan
from pytorch_ie.documents import (
TextBasedDocument,
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from src.document.processing import replace_substrings_in_text_with_spaces
logger = logging.getLogger(__name__)
def multi_span_is_in_span(multi_span: LabeledMultiSpan, range_span: Tuple[int, int]) -> bool:
start, end = range_span
starts, ends = zip(*multi_span.slices)
return start <= min(starts) and max(ends) <= end
def filter_multi_spans(
multi_spans: Sequence[LabeledMultiSpan], filter_span: Tuple[int, int]
) -> List[LabeledMultiSpan]:
return [
span
for span in multi_spans
if multi_span_is_in_span(multi_span=span, range_span=filter_span)
]
def shift_multi_span_slices(
slices: Sequence[Tuple[int, int]], shift: int
) -> List[Tuple[int, int]]:
return [(start + shift, end + shift) for start, end in slices]
def construct_gold_retrievals(
doc: TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
symmetric_relations: Optional[List[str]] = None,
relation_label_whitelist: Optional[List[str]] = None,
) -> Optional[pd.DataFrame]:
abstract_annotations = [
span for span in doc.labeled_partitions if span.label.lower().strip() == "abstract"
]
if len(abstract_annotations) != 1:
logger.warning(
f"Expected exactly one abstract annotation, found {len(abstract_annotations)}"
)
return None
abstract_annotation = abstract_annotations[0]
span_abstract = (abstract_annotation.start, abstract_annotation.end)
span_remaining = (abstract_annotation.end, len(doc.text))
labeled_multi_spans = list(doc.labeled_multi_spans)
spans_in_abstract = set(
span for span in labeled_multi_spans if multi_span_is_in_span(span, span_abstract)
)
spans_in_remaining = set(
span for span in labeled_multi_spans if multi_span_is_in_span(span, span_remaining)
)
spans_not_covered = set(labeled_multi_spans) - spans_in_abstract - spans_in_remaining
if len(spans_not_covered) > 0:
logger.warning(
f"Found {len(spans_not_covered)} spans not covered by abstract or remaining text"
)
rel_arg_and_label2other = defaultdict(list)
for rel in doc.binary_relations:
rel_arg_and_label2other[rel.head].append((rel.tail, rel.label))
if symmetric_relations is not None and rel.label in symmetric_relations:
label_reversed = rel.label
else:
label_reversed = f"{rel.label}_reversed"
rel_arg_and_label2other[rel.tail].append((rel.head, label_reversed))
result_rows = []
for rel in doc.binary_relations:
# we check all semantically_same relations that point from (head) remaining to abstract (tail) ...
if rel.label == "semantically_same":
if rel.head in spans_in_abstract and rel.tail in spans_in_remaining:
# ... and if the head is
# candidate_query_span = rel.tail
candidate_spans_with_label = rel_arg_and_label2other[rel.tail]
for candidate_span, rel_label in candidate_spans_with_label:
if (
relation_label_whitelist is not None
and rel_label not in relation_label_whitelist
):
continue
result_row = {
"doc_id": f"{doc.id}.remaining.{span_remaining[0]}.txt",
"query_doc_id": f"{doc.id}.abstract.{span_abstract[0]}_{span_abstract[1]}.txt",
"span": shift_multi_span_slices(candidate_span.slices, -span_remaining[0]),
"query_span": shift_multi_span_slices(rel.head.slices, -span_abstract[0]),
"ref_span": shift_multi_span_slices(rel.tail.slices, -span_remaining[0]),
"type": rel_label,
"label": candidate_span.label,
"ref_label": rel.tail.label,
}
result_rows.append(result_row)
if len(result_rows) > 0:
return pd.DataFrame(result_rows)
else:
return None
D_text = TypeVar("D_text", bound=TextBasedDocument)
def clean_doc(doc: D_text) -> D_text:
# remove xml tags. Note that we also remove the Abstract tag, in contrast to the preprocessing
# pipeline (see configs/dataset/sciarg_cleaned.yaml). This is because there, the abstracts are
# removed at completely.
doc = replace_substrings_in_text_with_spaces(
doc,
substrings=[
"</H2>",
"<H3>",
"</Document>",
"<H1>",
"<H2>",
"</H3>",
"</H1>",
"<Abstract>",
"</Abstract>",
],
)
return doc
def main(
data_dir: str,
out_path: str,
doc_id_whitelist: Optional[List[str]] = None,
symmetric_relations: Optional[List[str]] = None,
relation_label_whitelist: Optional[List[str]] = None,
) -> None:
logger.info(f"Loading dataset from {data_dir}")
sciarg_with_abstracts = load_dataset(
"pie/sciarg",
revision="171478ce3c13cc484be5d7c9bc8f66d7d2f1c210",
base_dataset_kwargs={"data_dir": data_dir, "split_paths": None},
name="resolve_parts_of_same",
split="train",
)
if issubclass(sciarg_with_abstracts.document_type, BratDocument):
ds_converted = sciarg_with_abstracts.to_document_type(
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
)
elif issubclass(sciarg_with_abstracts.document_type, BratDocumentWithMergedSpans):
ds_converted = sciarg_with_abstracts.to_document_type(
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
)
else:
raise ValueError(f"Unsupported document type {sciarg_with_abstracts.document_type}")
ds_clean = ds_converted.map(clean_doc)
if doc_id_whitelist is not None:
num_before = len(ds_clean)
ds_clean = [doc for doc in ds_clean if doc.id in doc_id_whitelist]
logger.info(
f"Filtered dataset from {num_before} to {len(ds_clean)} documents based on doc_id_whitelist"
)
results_per_doc = [
construct_gold_retrievals(
doc,
symmetric_relations=symmetric_relations,
relation_label_whitelist=relation_label_whitelist,
)
for doc in ds_clean
]
results_per_doc_not_empty = [doc for doc in results_per_doc if doc is not None]
if len(results_per_doc_not_empty) > 0:
results = pd.concat(results_per_doc_not_empty, ignore_index=True)
# sort to make the output deterministic
results = results.sort_values(
by=results.columns.tolist(), ignore_index=True, key=lambda s: s.apply(str)
)
os.makedirs(os.path.dirname(out_path), exist_ok=True)
logger.info(f"Saving result ({len(results)}) to {out_path}")
results.to_json(out_path)
else:
logger.warning("No results found")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Create gold retrievals for SciArg-abstracts-remaining in the same format as the retrieval results"
)
parser.add_argument(
"--data_dir",
type=str,
default="data/annotations/sciarg-with-abstracts-and-cross-section-rels",
help="Path to the sciarg data directory",
)
parser.add_argument(
"--out_path",
type=str,
default="data/retrieval_results/sciarg-with-abstracts-and-cross-section-rels/gold.json",
help="Path to save the results",
)
parser.add_argument(
"--symmetric_relations",
type=str,
nargs="+",
default=None,
help="Relations that are symmetric, i.e., if A is related to B, then B is related to A",
)
parser.add_argument(
"--relation_label_whitelist",
type=str,
nargs="+",
default=None,
help="Only consider relations with these labels",
)
logging.basicConfig(level=logging.INFO)
kwargs = vars(parser.parse_args())
main(**kwargs)
logger.info("Done")
|