File size: 21,620 Bytes
3133b5e
 
 
e7eaeed
 
3133b5e
ced4316
3133b5e
e7eaeed
3133b5e
ced4316
 
e7eaeed
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
ced4316
3133b5e
ced4316
3133b5e
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
ced4316
 
e7eaeed
 
 
ced4316
 
 
 
 
 
 
 
e7eaeed
 
ced4316
 
 
 
 
e7eaeed
 
ced4316
 
 
 
 
 
e7eaeed
 
 
ced4316
e7eaeed
 
ced4316
e7eaeed
ced4316
e7eaeed
 
ced4316
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
ced4316
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
from __future__ import annotations

import logging
from collections import defaultdict
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union

from pie_modules.utils.span import have_overlap
from pytorch_ie import AnnotationLayer
from pytorch_ie.annotations import LabeledMultiSpan, LabeledSpan, MultiSpan, Span
from pytorch_ie.core import Document
from pytorch_ie.core.document import Annotation, _enumerate_dependencies

from src.document.types import (
    RelatedRelation,
    TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
)
from src.utils import distance, distance_slices
from src.utils.span_utils import get_overlap_len

logger = logging.getLogger(__name__)


D = TypeVar("D", bound=Document)


def _remove_overlapping_entities(
    entities: Iterable[Dict[str, Any]], relations: Iterable[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
    sorted_entities = sorted(entities, key=lambda span: span["start"])
    entities_wo_overlap = []
    skipped_entities = []
    last_end = 0
    for entity_dict in sorted_entities:
        if entity_dict["start"] < last_end:
            skipped_entities.append(entity_dict)
        else:
            entities_wo_overlap.append(entity_dict)
            last_end = entity_dict["end"]
    if len(skipped_entities) > 0:
        logger.warning(f"skipped overlapping entities: {skipped_entities}")
    valid_entity_ids = set(entity_dict["_id"] for entity_dict in entities_wo_overlap)
    valid_relations = [
        relation_dict
        for relation_dict in relations
        if relation_dict["head"] in valid_entity_ids and relation_dict["tail"] in valid_entity_ids
    ]
    return entities_wo_overlap, valid_relations


def remove_overlapping_entities(
    doc: D,
    entity_layer_name: str = "entities",
    relation_layer_name: str = "relations",
) -> D:
    # TODO: use document.add_all_annotations_from_other()
    document_dict = doc.asdict()
    entities_wo_overlap, valid_relations = _remove_overlapping_entities(
        entities=document_dict[entity_layer_name]["annotations"],
        relations=document_dict[relation_layer_name]["annotations"],
    )

    document_dict[entity_layer_name] = {
        "annotations": entities_wo_overlap,
        "predictions": [],
    }
    document_dict[relation_layer_name] = {
        "annotations": valid_relations,
        "predictions": [],
    }
    new_doc = type(doc).fromdict(document_dict)

    return new_doc


def remove_partitions_by_labels(
    document: D, partition_layer: str, label_blacklist: List[str], span_layer: Optional[str] = None
) -> D:
    """Remove partitions with labels in the blacklist from a document.

    Args:
        document: The document to process.
        partition_layer: The name of the partition layer.
        label_blacklist: The list of labels to remove.
        span_layer: The name of the span layer to remove spans from if they are not fully
            contained in any remaining partition. Any dependent annotations will be removed as well.

    Returns:
        The processed document.
    """

    document = document.copy()
    p_layer: AnnotationLayer = document[partition_layer]
    new_partitions = []
    for partition in p_layer.clear():
        if partition.label not in label_blacklist:
            new_partitions.append(partition)
    p_layer.extend(new_partitions)

    if span_layer is not None:
        result = document.copy(with_annotations=False)
        removed_span_ids = set()
        for span in document[span_layer]:
            # keep spans fully contained in any partition
            if any(
                partition.start <= span.start and span.end <= partition.end
                for partition in new_partitions
            ):
                result[span_layer].append(span.copy())
            else:
                removed_span_ids.add(span._id)

        result.add_all_annotations_from_other(
            document,
            removed_annotations={span_layer: removed_span_ids},
            strict=False,
            verbose=False,
        )
        document = result

    return document


D_text = TypeVar("D_text", bound=Document)


def replace_substrings_in_text(
    document: D_text, replacements: Dict[str, str], enforce_same_length: bool = True
) -> D_text:
    new_text = document.text
    for old_str, new_str in replacements.items():
        if enforce_same_length and len(old_str) != len(new_str):
            raise ValueError(
                f'Replacement strings must have the same length, but got "{old_str}" -> "{new_str}"'
            )
        new_text = new_text.replace(old_str, new_str)
    result_dict = document.asdict()
    result_dict["text"] = new_text
    result = type(document).fromdict(result_dict)
    result.text = new_text
    return result


def replace_substrings_in_text_with_spaces(document: D_text, substrings: Iterable[str]) -> D_text:
    replacements = {substring: " " * len(substring) for substring in substrings}
    return replace_substrings_in_text(document, replacements=replacements)


def relabel_annotations(
    document: D,
    label_mapping: Dict[str, Dict[str, str]],
) -> D:
    """
    Replace annotation labels in a document.

    Args:
        document: The document to process.
        label_mapping: A mapping from layer names to mappings from old labels to new labels.

    Returns:
        The processed document.

    """

    dependency_ordered_fields: List[str] = []
    _enumerate_dependencies(
        dependency_ordered_fields,
        dependency_graph=document._annotation_graph,
        nodes=document._annotation_graph["_artificial_root"],
    )
    result = document.copy(with_annotations=False)
    store: Dict[int, Annotation] = {}
    # not yet used
    invalid_annotation_ids: Set[int] = set()
    for field_name in dependency_ordered_fields:
        if field_name in document._annotation_fields:
            layer = document[field_name]
            for is_prediction, anns in [(False, layer), (True, layer.predictions)]:
                for ann in anns:
                    new_ann = ann.copy_with_store(
                        override_annotation_store=store,
                        invalid_annotation_ids=invalid_annotation_ids,
                    )
                    if field_name in label_mapping:
                        if ann.label in label_mapping[field_name]:
                            new_label = label_mapping[field_name][ann.label]
                            new_ann = new_ann.copy(label=new_label)
                        else:
                            raise ValueError(
                                f"Label {ann.label} not found in label mapping for {field_name}"
                            )
                    store[ann._id] = new_ann
                    target_layer = result[field_name]
                    if is_prediction:
                        target_layer.predictions.append(new_ann)
                    else:
                        target_layer.append(new_ann)

    return result


DWithSpans = TypeVar("DWithSpans", bound=Document)


def get_start_end(span: Union[Span, MultiSpan]) -> Tuple[int, int]:
    if isinstance(span, Span):
        return span.start, span.end
    elif isinstance(span, MultiSpan):
        starts, ends = zip(*span.slices)
        return min(starts), max(ends)
    else:
        raise ValueError(f"Unsupported span type: {type(span)}")


def _get_aligned_span_mappings(
    gold_spans: Iterable[Span], pred_spans: Iterable[Span], distance_type: str
) -> Tuple[Dict[int, Span], Dict[int, Span]]:
    old2new_pred_span = {}
    span_id2gold_span = {}
    for pred_span in pred_spans:

        gold_spans_with_distance = [
            (
                gold_span,
                distance(
                    start_end=get_start_end(pred_span),
                    other_start_end=get_start_end(gold_span),
                    distance_type=distance_type,
                ),
            )
            for gold_span in gold_spans
        ]
        if len(gold_spans_with_distance) == 0:
            continue

        closest_gold_span, min_distance = min(gold_spans_with_distance, key=lambda x: x[1])
        # if the closest gold span is the same as the predicted span, we don't need to align
        if min_distance == 0.0:
            continue

        pred_start_end = get_start_end(pred_span)
        closest_gold_start_end = get_start_end(closest_gold_span)

        if have_overlap(
            start_end=pred_start_end,
            other_start_end=closest_gold_start_end,
        ):
            overlap_len = get_overlap_len(pred_start_end, closest_gold_start_end)
            l_max = max(
                pred_start_end[1] - pred_start_end[0],
                closest_gold_start_end[1] - closest_gold_start_end[0],
            )
            # if the overlap is at least half of the maximum length, we consider it a valid match for alignment
            valid_match = overlap_len >= (l_max / 2)
        else:
            valid_match = False

        if valid_match:
            if isinstance(pred_span, Span):
                aligned_pred_span = pred_span.copy(
                    start=closest_gold_span.start, end=closest_gold_span.end
                )
            elif isinstance(pred_span, MultiSpan):
                aligned_pred_span = pred_span.copy(slices=closest_gold_span.slices)
            else:
                raise ValueError(f"Unsupported span type: {type(pred_span)}")
            old2new_pred_span[pred_span._id] = aligned_pred_span
            span_id2gold_span[pred_span._id] = closest_gold_span

    return old2new_pred_span, span_id2gold_span


def get_spans2multi_spans_mapping(multi_spans: Iterable[MultiSpan]) -> Dict[Span, MultiSpan]:
    result = {}
    for multi_span in multi_spans:
        for start, end in multi_span.slices:
            span_kwargs = dict(start=start, end=end, score=multi_span.score)
            if isinstance(multi_span, LabeledMultiSpan):
                result[LabeledSpan(label=multi_span.label, **span_kwargs)] = multi_span
            else:
                result[Span(**span_kwargs)] = multi_span

    return result


def align_predicted_span_annotations(
    document: DWithSpans,
    span_layer: str,
    distance_type: str = "center",
    simple_multi_span: bool = False,
    verbose: bool = False,
) -> DWithSpans:
    """
    Aligns predicted span annotations with the closest gold spans in a document.

    First, calculates the distance between each predicted span and each gold span. Then,
    for each predicted span, the gold span with the smallest distance is selected. If the
    predicted span and the gold span have an overlap of at least half of the maximum length
    of the two spans, the predicted span is aligned with the gold span.

    This also works for MultiSpan annotations, where the slices of the MultiSpan are used
    to align the predicted spans. If any of the slices is aligned with a gold slice,
    the MultiSpan is aligned with the respective gold MultiSpan. However, this may result in
    the predicted MultiSpan being aligned with multiple gold MultiSpans, in which case the
    closest gold MultiSpan is selected. A simplified version of this alignment can be achieved
    by setting `simple_multi_span=True`, which treats MultiSpan annotations as simple Spans
    by using their maximum and minimum start and end indices.

    Args:
        document: The document to process.
        span_layer: The name of the span layer.
        distance_type: The type of distance to calculate. One of: center, inner, outer
        simple_multi_span: Whether to treat MultiSpan annotations as simple Spans by using their
            maximum and minimum start and end indices.
        verbose: Whether to print debug information.

    Returns:
        The processed document.
    """
    gold_spans = document[span_layer]
    if len(gold_spans) == 0:
        return document.copy()

    pred_spans = document[span_layer].predictions
    span_annotation_type = document.annotation_types()[span_layer]
    if issubclass(span_annotation_type, Span) or simple_multi_span:
        old2new_pred_span, span_id2gold_span = _get_aligned_span_mappings(
            gold_spans=gold_spans, pred_spans=pred_spans, distance_type=distance_type
        )
    elif issubclass(span_annotation_type, MultiSpan):
        # create Span objects from MultiSpan slices
        gold_single_spans2multi_spans = get_spans2multi_spans_mapping(gold_spans)
        pred_single_spans2multi_spans = get_spans2multi_spans_mapping(pred_spans)
        # create the alignment mappings for the single spans
        single_old2new_pred_span, single_span_id2gold_span = _get_aligned_span_mappings(
            gold_spans=gold_single_spans2multi_spans.keys(),
            pred_spans=pred_single_spans2multi_spans.keys(),
            distance_type=distance_type,
        )
        # collect all Spans that are part of the same MultiSpan
        pred_multi_span2single_spans: Dict[MultiSpan, List[Span]] = defaultdict(list)
        for pred_span, multi_span in pred_single_spans2multi_spans.items():
            pred_multi_span2single_spans[multi_span].append(pred_span)

        # create the new mappings for the MultiSpans
        old2new_pred_span = {}
        span_id2gold_span = {}
        for pred_multi_span, pred_single_spans in pred_multi_span2single_spans.items():
            # if any of the single spans is aligned with a gold span, align the multi span
            if any(
                pred_single_span._id in single_old2new_pred_span
                for pred_single_span in pred_single_spans
            ):
                # get aligned gold multi spans
                aligned_gold_multi_spans = set()
                for pred_single_span in pred_single_spans:
                    if pred_single_span._id in single_old2new_pred_span:
                        aligned_gold_single_span = single_span_id2gold_span[pred_single_span._id]
                        aligned_gold_multi_span = gold_single_spans2multi_spans[
                            aligned_gold_single_span
                        ]
                        aligned_gold_multi_spans.add(aligned_gold_multi_span)

                # calculate distances between the predicted multi span and the aligned gold multi spans
                gold_multi_spans_with_distance = [
                    (
                        gold_multi_span,
                        distance_slices(
                            slices=pred_multi_span.slices,
                            other_slices=gold_multi_span.slices,
                            distance_type=distance_type,
                        ),
                    )
                    for gold_multi_span in aligned_gold_multi_spans
                ]

                if len(aligned_gold_multi_spans) > 1:
                    logger.warning(
                        f"Multiple gold multi spans aligned with predicted multi span ({pred_multi_span}): "
                        f"{aligned_gold_multi_spans}"
                    )
                # get the closest gold multi span
                closest_gold_multi_span, min_distance = min(
                    gold_multi_spans_with_distance, key=lambda x: x[1]
                )
                old2new_pred_span[pred_multi_span._id] = pred_multi_span.copy(
                    slices=closest_gold_multi_span.slices
                )
                span_id2gold_span[pred_multi_span._id] = closest_gold_multi_span
    else:
        raise ValueError(f"Unsupported span annotation type: {span_annotation_type}")

    result = document.copy(with_annotations=False)

    # multiple predicted spans can be aligned with the same gold span,
    # so we need to keep track of the added spans
    added_pred_span_ids = dict()
    for pred_span in pred_spans:
        # just add the predicted span if it was not aligned with a gold span
        if pred_span._id not in old2new_pred_span:
            # if this was not added before (e.g. as aligned span), add it
            if pred_span._id not in added_pred_span_ids:
                keep_pred_span = pred_span.copy()
                result[span_layer].predictions.append(keep_pred_span)
                added_pred_span_ids[pred_span._id] = keep_pred_span
            elif verbose:
                print(f"Skipping duplicate predicted span. pred_span='{str(pred_span)}'")
        else:
            aligned_pred_span = old2new_pred_span[pred_span._id]
            # if this was not added before (e.g. as aligned or original pred span), add it
            if aligned_pred_span._id not in added_pred_span_ids:
                result[span_layer].predictions.append(aligned_pred_span)
                added_pred_span_ids[aligned_pred_span._id] = aligned_pred_span
            elif verbose:
                prev_pred_span = added_pred_span_ids[aligned_pred_span._id]
                gold_span = span_id2gold_span[pred_span._id]
                print(
                    f"Skipping duplicate aligned predicted span. aligned gold_span='{str(gold_span)}', "
                    f"prev_pred_span='{str(prev_pred_span)}', current_pred_span='{str(pred_span)}'"
                )
                # print("bbb")

    result[span_layer].extend([span.copy() for span in gold_spans])

    # add remaining gold and predicted spans (the result, _aligned_spans, is just for debugging)
    _aligned_spans = result.add_all_annotations_from_other(
        document, override_annotations={span_layer: old2new_pred_span}
    )

    return result


def add_related_relations_from_binary_relations(
    document: TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations,
    link_relation_label: str,
    link_partition_whitelist: Optional[List[List[str]]] = None,
    relation_label_whitelist: Optional[List[str]] = None,
    reversed_relation_suffix: str = "_reversed",
    symmetric_relations: Optional[List[str]] = None,
) -> TextDocumentWithLabeledMultiSpansBinaryRelationsLabeledPartitionsAndRelatedRelations:
    span2partition = {}
    for multi_span in document.labeled_multi_spans:
        found_partition = False
        for partition in document.labeled_partitions or [
            LabeledSpan(start=0, end=len(document.text), label="ALL")
        ]:
            starts, ends = zip(*multi_span.slices)
            if partition.start <= min(starts) and max(ends) <= partition.end:
                span2partition[multi_span] = partition
                found_partition = True
                break
        if not found_partition:
            raise ValueError(f"No partition found for multi_span {multi_span}")

    rel_head2rels = defaultdict(list)
    rel_tail2rels = defaultdict(list)
    for rel in document.binary_relations:
        rel_head2rels[rel.head].append(rel)
        rel_tail2rels[rel.tail].append(rel)

    link_partition_whitelist_tuples = None
    if link_partition_whitelist is not None:
        link_partition_whitelist_tuples = {tuple(pair) for pair in link_partition_whitelist}

    skipped_labels = []
    for link_rel in document.binary_relations:
        if link_rel.label == link_relation_label:
            head_partition = span2partition[link_rel.head]
            tail_partition = span2partition[link_rel.tail]
            if link_partition_whitelist_tuples is None or (
                (head_partition.label, tail_partition.label) in link_partition_whitelist_tuples
            ):
                # link_head -> link_tail == rel_head -> rel_tail
                for rel in rel_head2rels.get(link_rel.tail, []):
                    label = rel.label
                    if relation_label_whitelist is None or label in relation_label_whitelist:
                        new_rel = RelatedRelation(
                            head=link_rel.head,
                            tail=rel.tail,
                            link_relation=link_rel,
                            relation=rel,
                            label=label,
                        )
                        document.related_relations.append(new_rel)
                    else:
                        skipped_labels.append(label)

                # link_head -> link_tail == rel_tail -> rel_head
                if reversed_relation_suffix is not None:
                    for reversed_rel in rel_tail2rels.get(link_rel.tail, []):
                        label = reversed_rel.label
                        if not (symmetric_relations is not None and label in symmetric_relations):
                            label = f"{label}{reversed_relation_suffix}"
                        if relation_label_whitelist is None or label in relation_label_whitelist:
                            new_rel = RelatedRelation(
                                head=link_rel.head,
                                tail=reversed_rel.head,
                                link_relation=link_rel,
                                relation=reversed_rel,
                                label=label,
                            )
                            document.related_relations.append(new_rel)
                        else:
                            skipped_labels.append(label)

            else:
                logger.warning(
                    f"Skipping related relation because of partition whitelist ({[head_partition.label, tail_partition.label]}): {link_rel.resolve()}"
                )
    if len(skipped_labels) > 0:
        logger.warning(
            f"Skipped relations with labels not in whitelist: {sorted(set(skipped_labels))}"
        )

    return document