File size: 37,311 Bytes
2cc87ec 3133b5e 2cc87ec ced4316 2cc87ec ced4316 2cc87ec 3133b5e 2cc87ec 3133b5e 2cc87ec ced4316 2cc87ec ced4316 2cc87ec ced4316 2cc87ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
import logging
import os
import uuid
from collections import defaultdict
from copy import copy
from enum import Enum
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import BaseDocumentCompressor
from langchain_core.documents import Document as LCDocument
from langchain_core.retrievers import BaseRetriever
from pydantic import Field
from pytorch_ie.annotations import LabeledMultiSpan, LabeledSpan, MultiSpan, Span
from pytorch_ie.core.document import BaseAnnotationList
from pytorch_ie.documents import (
TextBasedDocument,
TextDocumentWithLabeledMultiSpans,
TextDocumentWithLabeledSpans,
TextDocumentWithSpans,
)
from ..utils import parse_config
from .pie_document_store import PieDocumentStore
from .serializable_store import SerializableStore
from .span_vectorstore import SpanVectorStore
logger = logging.getLogger(__name__)
METADATA_KEY_CHILD_ID2IDX = "child_id2idx"
class SpanNotFoundError(ValueError):
def __init__(self, span_id: str, doc_id: Optional[str] = None, msg: Optional[str] = None):
if msg is None:
if doc_id is not None:
msg = f"Span with id [{span_id}] not found in document [{doc_id}]"
else:
msg = f"Span with id [{span_id}] not found in the vectorstore"
super().__init__(msg)
self.span_id = span_id
self.doc_id = doc_id
class DocumentNotFoundError(ValueError):
def __init__(self, doc_id: str, msg: Optional[str] = None):
msg = msg or f"Document with id [{doc_id}] not found in the docstore"
super().__init__(msg)
self.doc_id = doc_id
class SearchType(str, Enum):
"""Enumerator of the types of search to perform."""
similarity = "similarity"
"""Similarity search."""
similarity_score_threshold = "similarity_score_threshold"
"""Similarity search with a score threshold."""
mmr = "mmr"
"""Maximal Marginal Relevance reranking of similarity search."""
class DocumentAwareSpanRetriever(BaseRetriever, SerializableStore):
"""Retriever for contextualized text spans, i.e. spans within text documents.
It accepts spans as queries and retrieves spans with their containing document.
Note that the query span (and its document) must already be in the retriever's
store."""
pie_document_type: Type[TextBasedDocument]
"""The name of the span annotation layer in the pie document."""
use_predicted_annotations_key: str = "use_predicted_annotations"
"""Whether to use the predicted annotations or the gold annotations."""
retrieve_from_same_document: bool = False
"""Whether to retrieve spans exclusively from the same document as the query span."""
retrieve_from_different_documents: bool = False
"""Whether to retrieve spans exclusively from different documents than the query span."""
# content from langchain_core.retrievers.MultiVectorRetriever
vectorstore: SpanVectorStore
"""The underlying vectorstore to use to store small chunks
and their embedding vectors"""
docstore: PieDocumentStore
"""The storage interface for the parent documents"""
id_key: str = "doc_id"
"""The key to use to track the parent id. This will be stored in the
metadata of child documents."""
search_kwargs: dict = Field(default_factory=dict)
"""Keyword arguments to pass to the search function."""
search_type: SearchType = SearchType.similarity
"""Type of search to perform (similarity / mmr)"""
# content taken from langchain_core.retrievers.ParentDocumentRetriever
child_metadata_fields: Optional[Sequence[str]] = None
"""Metadata fields to leave in child documents. If None, leave all parent document
metadata.
"""
# re-ranking
compressor: Optional[BaseDocumentCompressor] = None
"""Compressor for compressing retrieved documents."""
compressor_context_size: int = 50
"""Size of the context to use around the query and retrieved spans when compressing."""
compressor_query_context_size: Optional[int] = 10
"""Size of the context to use around the query when compressing. If None, will use the
same value as `compressor_context_size`."""
@classmethod
def instantiate_from_config(
cls, config: Dict[str, Any], overwrites: Optional[Dict[str, Any]] = None
) -> "DocumentAwareSpanRetriever":
"""Instantiate a retriever from a configuration dictionary."""
from hydra.utils import instantiate
return instantiate(config, **(overwrites or {}))
@classmethod
def instantiate_from_config_string(
cls, config_string: str, format: str, overwrites: Optional[Dict[str, Any]] = None
) -> "DocumentAwareSpanRetriever":
"""Instantiate a retriever from a configuration string."""
return cls.instantiate_from_config(
parse_config(config_string, format=format), overwrites=overwrites
)
@classmethod
def instantiate_from_config_file(
cls, config_path: str, overwrites: Optional[Dict[str, Any]] = None
) -> "DocumentAwareSpanRetriever":
"""Instantiate a retriever from a configuration file."""
with open(config_path, "r") as file:
config_string = file.read()
if config_path.endswith(".json"):
return cls.instantiate_from_config_string(
config_string, format="json", overwrites=overwrites
)
elif config_path.endswith(".yaml"):
return cls.instantiate_from_config_string(
config_string, format="yaml", overwrites=overwrites
)
else:
raise ValueError(f"Unsupported file extension: {config_path}")
@property
def pie_annotation_layer_name(self) -> str:
if issubclass(self.pie_document_type, TextDocumentWithSpans):
return "spans"
elif issubclass(self.pie_document_type, TextDocumentWithLabeledSpans):
return "labeled_spans"
elif issubclass(self.pie_document_type, TextDocumentWithLabeledMultiSpans):
return "labeled_multi_spans"
else:
raise ValueError(
f"Unsupported pie document type: {self.pie_document_type}. "
"Must be one of TextDocumentWithSpans, TextDocumentWithLabeledSpans, "
"or TextDocumentWithLabeledMultiSpans."
)
def _span_to_dict(self, span: Union[Span, MultiSpan]) -> dict:
span_dict = {}
if isinstance(span, Span):
span_dict[self.vectorstore.SPAN_START_KEY] = span.start
span_dict[self.vectorstore.SPAN_END_KEY] = span.end
span_dict["type"] = "Span"
elif isinstance(span, MultiSpan):
starts, ends = zip(*span.slices)
span_dict[self.vectorstore.SPAN_START_KEY] = starts
span_dict[self.vectorstore.SPAN_END_KEY] = ends
span_dict["type"] = "MultiSpan"
else:
raise ValueError(f"Unsupported span type: {type(span)}")
if isinstance(span, (LabeledSpan, LabeledMultiSpan)):
span_dict["label"] = span.label
span_dict["score"] = span.score
return span_dict
def _dict_to_span(self, span_dict: dict) -> Union[Span, MultiSpan]:
if span_dict["type"] == "Span":
kwargs = dict(
start=span_dict[self.vectorstore.SPAN_START_KEY],
end=span_dict[self.vectorstore.SPAN_END_KEY],
)
if "label" in span_dict:
kwargs["label"] = span_dict["label"]
kwargs["score"] = span_dict["score"]
return LabeledSpan(**kwargs)
else:
return Span(**kwargs)
elif span_dict["type"] == "MultiSpan":
starts = span_dict[self.vectorstore.SPAN_START_KEY]
ends = span_dict[self.vectorstore.SPAN_END_KEY]
slices = tuple((start, end) for start, end in zip(starts, ends))
kwargs = dict(slices=slices)
if "label" in span_dict:
kwargs["label"] = span_dict["label"]
kwargs["score"] = span_dict["score"]
return LabeledMultiSpan(**kwargs)
else:
return MultiSpan(**kwargs)
else:
raise ValueError(f"Unsupported span type: {span_dict['type']}")
def use_predicted_annotations(self, doc: LCDocument) -> bool:
"""Check if the document uses predicted spans."""
return doc.metadata.get(self.use_predicted_annotations_key, True)
def get_document(self, doc_id: str) -> LCDocument:
"""Get a document by its id."""
documents = self.docstore.mget([doc_id])
if len(documents) == 0 or documents[0] is None:
raise DocumentNotFoundError(doc_id=doc_id)
if len(documents) > 1:
raise ValueError(f"Multiple documents found with id: {doc_id}")
return documents[0]
def get_span_document(self, span_id: str, with_vector: bool = False) -> LCDocument:
"""Get a span document by its id."""
if with_vector:
span_docs = self.vectorstore.get_by_ids_with_vectors([span_id])
else:
span_docs = self.vectorstore.get_by_ids([span_id])
if len(span_docs) == 0 or span_docs[0] is None:
raise SpanNotFoundError(span_id=span_id)
if len(span_docs) > 1:
raise ValueError(f"Multiple span documents found with id: {span_id}")
return span_docs[0]
def get_base_layer(
self, pie_document: TextBasedDocument, use_predicted_annotations: bool
) -> BaseAnnotationList:
"""Get the base layer of the pie document."""
if self.pie_annotation_layer_name not in pie_document:
raise ValueError(
f'The pie document must contain the annotation layer "{self.pie_annotation_layer_name}"'
)
layer = pie_document[self.pie_annotation_layer_name]
return layer.predictions if use_predicted_annotations else layer
def get_span_by_id(self, span_id: str) -> Union[Span, MultiSpan]:
"""Get a span annotation by its id."""
span_doc = self.get_span_document(span_id)
doc_id = span_doc.metadata[self.id_key]
doc = self.get_document(doc_id)
return self.get_span_from_doc_by_id(doc=doc, span_id=span_id)
def get_span_from_doc_by_id(self, doc: LCDocument, span_id: str) -> Union[Span, MultiSpan]:
"""Get the span of a query."""
base_layer = self.get_base_layer(
self.docstore.unwrap(doc),
use_predicted_annotations=self.use_predicted_annotations(doc),
)
span_idx = doc.metadata[METADATA_KEY_CHILD_ID2IDX].get(span_id)
if span_idx is None:
raise SpanNotFoundError(span_id=span_id, doc_id=doc.id)
return base_layer[span_idx]
def get_span_id2idx_from_doc(self, doc: Union[LCDocument, str]) -> Dict[str, int]:
"""Get all span ids from a document.
Args:
doc: Document or document id
Returns:
Dictionary mapping span ids to their index in the base layer.
"""
if isinstance(doc, str):
doc = self.get_document(doc)
return doc.metadata[METADATA_KEY_CHILD_ID2IDX]
def prepare_search_kwargs(
self,
span_id: str,
doc_id_whitelist: Optional[List[str]] = None,
doc_id_blacklist: Optional[List[str]] = None,
kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[dict, LCDocument]:
# get the span document
query_span_doc = self.get_span_document(span_id, with_vector=True)
query_doc_id = query_span_doc.metadata[self.id_key]
query_doc = self.get_document(query_doc_id)
# TODO: why do we do this? Just to be the same as the result of the search when doing compression?
# add "pie_document" to the metadata
query_span_doc.metadata[self.docstore.METADATA_KEY_PIE_DOCUMENT] = self.docstore.unwrap(
query_doc
)
search_kwargs = copy(self.search_kwargs)
search_kwargs.update(kwargs or {})
query_span = self.get_span_from_doc_by_id(doc=query_doc, span_id=span_id)
if self.retrieve_from_different_documents and self.retrieve_from_same_document:
raise ValueError("Cannot retrieve from both same and different documents")
if self.retrieve_from_same_document:
if doc_id_whitelist is None:
doc_id_whitelist = [query_doc_id]
elif query_doc_id not in doc_id_whitelist:
doc_id_whitelist.append(query_doc_id)
if self.retrieve_from_different_documents:
if doc_id_blacklist is None:
doc_id_blacklist = [query_doc_id]
elif query_doc_id not in doc_id_blacklist:
doc_id_blacklist.append(query_doc_id)
query_filter = self.vectorstore.construct_filter(
query_span=query_span,
metadata_doc_id_key=self.id_key,
doc_id_whitelist=doc_id_whitelist,
doc_id_blacklist=doc_id_blacklist,
)
if query_filter is not None:
search_kwargs["filter"] = query_filter
# get the vector of the reference span
search_kwargs["embedding"] = query_span_doc.metadata[self.vectorstore.METADATA_VECTOR_KEY]
return search_kwargs, query_span_doc
def _prepare_query_for_compression(self, query_doc: LCDocument) -> str:
return self._prepare_doc_for_compression(
query_doc, context_size=self.compressor_query_context_size
).page_content
def _prepare_doc_for_compression(
self, doc: LCDocument, context_size: Optional[int] = None
) -> LCDocument:
if context_size is None:
context_size = self.compressor_context_size
pie_doc: TextBasedDocument = self.docstore.unwrap(doc)
text = pie_doc.text
span_dict = doc.metadata[self.vectorstore.METADATA_SPAN_KEY]
span_start = span_dict[self.vectorstore.SPAN_START_KEY]
span_end = span_dict[self.vectorstore.SPAN_END_KEY]
if isinstance(span_start, list):
span_start = span_start[0]
if isinstance(span_end, list):
span_end = span_end[0]
context_start = span_start - context_size
context_end = span_end + context_size
doc.page_content = text[max(0, context_start) : min(context_end, len(text))]
# save the original relevance score and remove it because otherwise we will not be able to get
# the reranking relevance score
if "relevance_score" in doc.metadata:
doc.metadata["relevance_score_without_reranking"] = doc.metadata.pop("relevance_score")
return doc
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
doc_id_whitelist: Optional[List[str]] = None,
doc_id_blacklist: Optional[List[str]] = None,
**kwargs: Any,
) -> List[LCDocument]:
"""Get span documents relevant to a query span
Args:
query: The span id to find relevant spans for
run_manager: The callbacks handler to use
Returns:
List of relevant span documents with metadata from the parent document
"""
search_kwargs, query_span_doc = self.prepare_search_kwargs(
span_id=query,
kwargs=kwargs,
doc_id_whitelist=doc_id_whitelist,
doc_id_blacklist=doc_id_blacklist,
)
if self.search_type == SearchType.mmr:
span_docs = self.vectorstore.max_marginal_relevance_search_by_vector(**search_kwargs)
elif self.search_type == SearchType.similarity_score_threshold:
sub_docs_and_similarities = self.vectorstore.similarity_search_with_score_by_vector(
**search_kwargs
)
span_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities]
else:
span_docs = self.vectorstore.similarity_search_by_vector(**search_kwargs)
# We do this to maintain the order of the ids that are returned
doc_ids = []
for span_doc in span_docs:
if self.id_key not in span_doc.metadata:
raise ValueError(f"Metadata must contain the key {self.id_key}")
if span_doc.metadata[self.id_key] not in doc_ids:
doc_ids.append(span_doc.metadata[self.id_key])
docs = self.docstore.mget(doc_ids)
doc_id2doc = dict(zip(doc_ids, docs))
for span_doc in span_docs:
doc = doc_id2doc[span_doc.metadata[self.id_key]]
span_doc.metadata.update(doc.metadata)
span_doc.metadata["attached_span"] = self.get_span_from_doc_by_id(
doc=doc, span_id=span_doc.id
)
span_doc.metadata["query_span_id"] = query
# filter out the query span doc
span_docs_filtered = [
span_doc for span_doc in span_docs if span_doc.id != query_span_doc.id
]
if self.compressor is None:
return span_docs_filtered
if span_docs_filtered:
prepared_docs = [
self._prepare_doc_for_compression(sub_doc) for sub_doc in span_docs_filtered
]
prepared_query = self._prepare_query_for_compression(query_span_doc)
compressed_docs = self.compressor.compress_documents(
documents=prepared_docs, query=prepared_query, callbacks=run_manager.get_child()
)
return list(compressed_docs)
else:
return []
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
doc_id_whitelist: Optional[List[str]] = None,
doc_id_blacklist: Optional[List[str]] = None,
**kwargs: Any,
) -> List[LCDocument]:
"""Asynchronously get span documents relevant to a query span
Args:
query: The span id to find relevant spans for
run_manager: The callbacks handler to use
Returns:
List of relevant span documents with metadata from the parent document
"""
search_kwargs, query_span_doc = self.prepare_search_kwargs(
span_id=query,
kwargs=kwargs,
doc_id_whitelist=doc_id_whitelist,
doc_id_blacklist=doc_id_blacklist,
)
if self.search_type == SearchType.mmr:
span_docs = await self.vectorstore.amax_marginal_relevance_search_by_vector(
**search_kwargs
)
elif self.search_type == SearchType.similarity_score_threshold:
sub_docs_and_similarities = (
await self.vectorstore.asimilarity_search_with_score_by_vector(**search_kwargs)
)
span_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities]
else:
span_docs = await self.vectorstore.asimilarity_search_by_vector(**search_kwargs)
# We do this to maintain the order of the ids that are returned
ids = []
for span_doc in span_docs:
if self.id_key not in span_doc.metadata:
raise ValueError(f"Metadata must contain the key {self.id_key}")
if span_doc.metadata[self.id_key] not in ids:
ids.append(span_doc.metadata[self.id_key])
docs = await self.docstore.amget(ids)
doc_id2doc = dict(zip(ids, docs))
for span_doc in span_docs:
doc = doc_id2doc[span_doc.metadata[self.id_key]]
span_doc.metadata.update(doc.metadata)
span_doc.metadata["attached_span"] = self.get_span_from_doc_by_id(
doc=doc, span_id=span_doc.id
)
span_doc.metadata["query_span_id"] = query
# filter out the query span doc
span_docs_filtered = [
span_doc for span_doc in span_docs if span_doc.id != query_span_doc.id
]
if self.compressor is None:
return span_docs_filtered
if docs:
prepared_docs = [
self._prepare_doc_for_compression(sub_doc) for sub_doc in span_docs_filtered
]
prepared_query = self._prepare_query_for_compression(query_span_doc)
compressed_docs = await self.base_compressor.acompress_documents(
prepared_docs, query=prepared_query, callbacks=run_manager.get_child()
)
return list(compressed_docs)
else:
return []
def create_span_documents(
self, documents: List[LCDocument]
) -> Tuple[List[LCDocument], Dict[str, int]]:
span_docs = []
id2idx = {}
for i, doc in enumerate(documents):
pie_doc, metadata = self.docstore.unwrap_with_metadata(doc)
base_layer = self.get_base_layer(
pie_doc, use_predicted_annotations=self.use_predicted_annotations(doc)
)
if len(base_layer) == 0:
logger.warning(f"No spans found in document {i} (id: {doc.id})")
for idx, labeled_span in enumerate(base_layer):
_metadata = {k: v for k, v in metadata.items() if k != METADATA_KEY_CHILD_ID2IDX}
# save as dict to avoid serialization issues
_metadata[self.vectorstore.METADATA_SPAN_KEY] = self._span_to_dict(labeled_span)
new_doc = LCDocument(
id=str(uuid.uuid4()), page_content=pie_doc.text, metadata=_metadata
)
span_docs.append(new_doc)
id2idx[new_doc.id] = idx
return span_docs, id2idx
def _split_docs_for_adding(
self,
documents: List[LCDocument],
ids: Optional[List[str]] = None,
add_to_docstore: bool = True,
) -> Tuple[List[LCDocument], List[Tuple[str, LCDocument]]]:
if ids is None:
doc_ids = [doc.id for doc in documents]
if not add_to_docstore:
raise ValueError("If ids are not passed in, `add_to_docstore` MUST be True")
else:
if len(documents) != len(ids):
raise ValueError(
"Got uneven list of documents and ids. "
"If `ids` is provided, should be same length as `documents`."
)
doc_ids = ids
if len(set(doc_ids)) != len(doc_ids):
raise ValueError("IDs must be unique")
docs = []
full_docs = []
for i, doc in enumerate(documents):
_id = doc_ids[i]
sub_docs, sub_doc_id2idx = self.create_span_documents([doc])
if self.child_metadata_fields is not None:
for sub_doc in sub_docs:
sub_doc.metadata = {k: sub_doc.metadata[k] for k in self.child_metadata_fields}
for sub_doc in sub_docs:
# Add the parent id to the child document id
sub_doc.metadata[self.id_key] = _id
docs.extend(sub_docs)
doc.metadata[METADATA_KEY_CHILD_ID2IDX] = sub_doc_id2idx
full_docs.append((_id, doc))
return docs, full_docs
def remove_missing_span_ids_from_document(
self, document: LCDocument, span_ids: Set[str]
) -> LCDocument:
"""Remove invalid span ids from the span to idx mapping
of the document.
Args:
document: Document to remove invalid span ids from
span_ids: Set of valid span ids
Returns:
Document with invalid span ids removed
"""
span_id2idx = document.metadata[METADATA_KEY_CHILD_ID2IDX]
new_doc = copy(document)
filtered_span_id2idx = {
span_id: idx for span_id, idx in span_id2idx.items() if span_id in span_ids
}
new_doc.metadata[METADATA_KEY_CHILD_ID2IDX] = filtered_span_id2idx
missed_span_ids = set(span_id2idx.keys()) - span_ids
if len(missed_span_ids) > 0:
layer = self.get_base_layer(
self.docstore.unwrap(document),
use_predicted_annotations=self.use_predicted_annotations(document),
)
resolved_missed_spans = [
layer[span_id2idx[span_id]].resolve() for span_id in missed_span_ids
]
logger.warning(
f"Document {document.id} contains spans that can not be added to the "
f"vectorstore because no vector could be calculated:\n{resolved_missed_spans}.\n"
"These spans will be not queryable."
)
return document
def add_documents(
self,
documents: List[LCDocument],
ids: Optional[List[str]] = None,
add_to_docstore: bool = True,
**kwargs: Any,
) -> None:
"""Adds documents to the docstore and vectorstores.
Args:
documents: List of documents to add
ids: Optional list of ids for documents. If provided should be the same
length as the list of documents. Can be provided if parent documents
are already in the document store and you don't want to re-add
to the docstore. If not provided, random UUIDs will be used as
ids.
add_to_docstore: Boolean of whether to add documents to docstore.
This can be false if and only if `ids` are provided. You may want
to set this to False if the documents are already in the docstore
and you don't want to re-add them.
"""
docs, full_docs = self._split_docs_for_adding(documents, ids, add_to_docstore)
added_span_ids = self.vectorstore.add_documents(docs, **kwargs)
full_docs = [
(doc_id, self.remove_missing_span_ids_from_document(doc, set(added_span_ids)))
for doc_id, doc in full_docs
]
if add_to_docstore:
self.docstore.mset(full_docs)
async def aadd_documents(
self,
documents: List[LCDocument],
ids: Optional[List[str]] = None,
add_to_docstore: bool = True,
**kwargs: Any,
) -> None:
docs, full_docs = self._split_docs_for_adding(documents, ids, add_to_docstore)
added_span_ids = await self.vectorstore.aadd_documents(docs, **kwargs)
full_docs = [
(doc_id, self.remove_missing_span_ids_from_document(doc, set(added_span_ids)))
for doc_id, doc in full_docs
]
if add_to_docstore:
await self.docstore.amset(full_docs)
def delete_documents(self, ids: List[str]) -> None:
"""Remove documents from the docstore and vectorstores.
Args:
ids: List of ids to remove
"""
# get all child ids
child_ids = []
for doc in self.docstore.mget(ids):
child_ids.extend(doc.metadata[METADATA_KEY_CHILD_ID2IDX])
self.vectorstore.delete(child_ids)
self.docstore.mdelete(ids)
async def adelete_documents(self, ids: List[str]) -> None:
"""Asynchronously remove documents from the docstore and vectorstores.
Args:
ids: List of ids to remove
"""
# get all child ids
child_ids = []
docs: List[LCDocument] = await self.docstore.amget(ids)
for doc in docs:
child_ids.extend(doc.metadata[METADATA_KEY_CHILD_ID2IDX])
await self.vectorstore.adelete(child_ids)
await self.docstore.amdelete(ids)
def add_pie_documents(
self,
documents: Iterable[TextBasedDocument],
use_predicted_annotations: bool,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""Add pie documents to the retriever.
Args:
documents: Iterable of pie documents to add
use_predicted_annotations: Whether to use the predicted annotations or the gold annotations
metadata: Optional metadata to add to each document
"""
metadata = metadata or {}
metadata = copy(metadata)
metadata[self.use_predicted_annotations_key] = use_predicted_annotations
docs = [self.docstore.wrap(doc, **metadata) for doc in documents]
# delete any existing documents with the same ids (simply overwriting would keep the spans)
new_docs_ids = [doc.id for doc in docs]
existing_docs = self.docstore.mget(new_docs_ids)
existing_doc_ids = [doc.id for doc in existing_docs]
self.delete_documents(existing_doc_ids)
self.add_documents(docs)
def _save_to_directory(self, path: str, **kwargs) -> None:
logger.info(f'Saving docstore and vectorstore to "{path}" ...')
self.docstore.save_to_directory(os.path.join(path, "docstore"))
self.vectorstore.save_to_directory(os.path.join(path, "vectorstore"))
def _load_from_directory(self, path: str, **kwargs) -> None:
logger.info(f'Loading docstore and vectorstore from "{path}" ...')
self.docstore.load_from_directory(os.path.join(path, "docstore"))
self.vectorstore.load_from_directory(os.path.join(path, "vectorstore"))
METADATA_KEY_RELATION_LABEL2TAILS_WITH_SCORES = "relation_label2tails_with_scores"
class DocumentAwareSpanRetrieverWithRelations(DocumentAwareSpanRetriever):
"""Retriever for related contextualized text spans, i.e. spans linked by relations
to reference spans that are similar to the query span. It accepts spans as queries and
retrieves spans with their containing document and the reference span."""
relation_layer_name: str = "binary_relations"
"""The name of the relation annotation layer in the pie document."""
relation_labels: Optional[List[str]] = None
"""The list of relation labels to consider."""
span_labels: Optional[List[str]] = None
"""The list of span labels to consider."""
reversed_relations_suffix: Optional[str] = None
"""Whether to consider reverse relations as well."""
symmetric_relations: Optional[list[str]] = None
"""The list of relation labels that are symmetric."""
def get_relation_layer(
self, pie_document: TextBasedDocument, use_predicted_annotations: bool
) -> BaseAnnotationList:
"""Get the relation layer of the pie document."""
if self.relation_layer_name not in pie_document:
raise ValueError(
f'The pie document must contain the annotation layer "{self.relation_layer_name}"'
)
layer = pie_document[self.relation_layer_name]
return layer.predictions if use_predicted_annotations else layer
def create_span_documents(
self, documents: List[LCDocument]
) -> Tuple[List[LCDocument], Dict[str, int]]:
span_docs = []
id2idx = {}
for i, doc in enumerate(documents):
pie_doc, metadata = self.docstore.unwrap_with_metadata(doc)
use_predicted_annotations = self.use_predicted_annotations(doc)
base_layer = self.get_base_layer(
pie_doc, use_predicted_annotations=use_predicted_annotations
)
if len(base_layer) == 0:
logger.warning(f"No spans found in document {i} (id: {doc.id})")
id2span = {str(uuid.uuid4()): span for span in base_layer}
span2id = {span: span_id for span_id, span in id2span.items()}
if len(id2span) != len(span2id):
raise ValueError("Span ids and spans must be unique")
relations = self.get_relation_layer(
pie_doc, use_predicted_annotations=use_predicted_annotations
)
head2label2tails_with_scores: Dict[str, Dict[str, List[Tuple[str, float]]]] = (
defaultdict(lambda: defaultdict(list))
)
for relation in relations:
is_symmetric = (
self.symmetric_relations is not None
and relation.label in self.symmetric_relations
)
if self.relation_labels is None or relation.label in self.relation_labels:
head2label2tails_with_scores[span2id[relation.head]][relation.label].append(
(span2id[relation.tail], relation.score)
)
if is_symmetric:
head2label2tails_with_scores[span2id[relation.tail]][
relation.label
].append((span2id[relation.head], relation.score))
if self.reversed_relations_suffix is not None and not is_symmetric:
reversed_label = f"{relation.label}{self.reversed_relations_suffix}"
if self.relation_labels is None or reversed_label in self.relation_labels:
head2label2tails_with_scores[span2id[relation.tail]][
reversed_label
].append((span2id[relation.head], relation.score))
for idx, span in enumerate(base_layer):
span_id = span2id[span]
_metadata = {k: v for k, v in metadata.items() if k != METADATA_KEY_CHILD_ID2IDX}
# save as dict to avoid serialization issues
_metadata[self.vectorstore.METADATA_SPAN_KEY] = self._span_to_dict(span)
relation_label2tails_with_scores = head2label2tails_with_scores[span_id]
_metadata[METADATA_KEY_RELATION_LABEL2TAILS_WITH_SCORES] = dict(
relation_label2tails_with_scores
)
new_doc = LCDocument(id=span_id, page_content=pie_doc.text, metadata=_metadata)
span_docs.append(new_doc)
id2idx[span_id] = idx
return span_docs, id2idx
def _get_relevant_documents(
self,
query: str,
return_related: bool = False,
*,
run_manager: CallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[LCDocument]:
"""Get span documents relevant to a query span. We follow one hop of relations.
Args:
query: The span id to find relevant spans for
return_related: Whether to return related spans
run_manager: The callbacks handler to use
Returns:
List of relevant span documents with metadata from the parent document
"""
similar_span_docs = super()._get_relevant_documents(
query=query, run_manager=run_manager, **kwargs
)
if not return_related:
return similar_span_docs
related_docs = []
for head_span_doc in similar_span_docs:
doc_id = head_span_doc.metadata[self.id_key]
doc = self.get_document(doc_id)
query_span_id = head_span_doc.metadata["query_span_id"]
for relation_label, tails_with_score in head_span_doc.metadata[
METADATA_KEY_RELATION_LABEL2TAILS_WITH_SCORES
].items():
for tail_id, relation_score in tails_with_score:
# in the case that we query against the same document,
# we don't want to return the same span as the query span
if tail_id == query_span_id:
continue
try:
attached_tail_span = self.get_span_from_doc_by_id(doc=doc, span_id=tail_id)
# this may happen if the tail span could not be added to the vectorstore, e.g. because
# the token span length is zero and no vector could be calculated
except SpanNotFoundError:
logger.warning(
f"Tail span with id [{tail_id}] not found in the vectorstore. Skipping."
)
continue
# TODO: handle via filter? see vectorstore.construct_filter
if self.span_labels is not None:
if not isinstance(attached_tail_span, (LabeledSpan, LabeledMultiSpan)):
raise ValueError(
"Span must must be a labeled span if span_labels is provided"
)
if attached_tail_span.label not in self.span_labels:
continue
related_docs.append(
LCDocument(
id=tail_id,
page_content="",
metadata={
"relation_score": relation_score,
"head_id": head_span_doc.id,
"relation_label": relation_label,
"attached_tail_span": attached_tail_span,
**head_span_doc.metadata,
},
)
)
return related_docs
|