ArneBinder's picture
https://github.com/ArneBinder/pie-document-level/pull/312
3133b5e verified
import pyrootutils
root = pyrootutils.setup_root(
search_from=__file__,
indicator=[".project-root"],
pythonpath=True,
dotenv=True,
)
# ------------------------------------------------------------------------------------ #
# `pyrootutils.setup_root(...)` is an optional line at the top of each entry file
# that helps to make the environment more robust and convenient
#
# the main advantages are:
# - allows you to keep all entry files in "src/" without installing project as a package
# - makes paths and scripts always work no matter where is your current work dir
# - automatically loads environment variables from ".env" file if exists
#
# how it works:
# - the line above recursively searches for either ".git" or "pyproject.toml" in present
# and parent dirs, to determine the project root dir
# - adds root dir to the PYTHONPATH (if `pythonpath=True`), so this file can be run from
# any place without installing project as a package
# - sets PROJECT_ROOT environment variable which is used in "configs/paths/default.yaml"
# to make all paths always relative to the project root
# - loads environment variables from ".env" file in root dir (if `dotenv=True`)
#
# you can remove `pyrootutils.setup_root(...)` if you:
# 1. either install project as a package or move each entry file to the project root dir
# 2. simply remove PROJECT_ROOT variable from paths in "configs/paths/default.yaml"
# 3. always run entry files from the project root dir
#
# https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #
from typing import Tuple
import hydra
import pytorch_lightning as pl
from omegaconf import DictConfig
from pie_datasets import DatasetDict
from pie_modules.models import * # noqa: F403
from pie_modules.taskmodules import * # noqa: F403
from pytorch_ie.core import PyTorchIEModel, TaskModule
from pytorch_ie.models import * # noqa: F403
from pytorch_ie.taskmodules import * # noqa: F403
from pytorch_lightning import Trainer
from src import utils
from src.datamodules import PieDataModule
from src.models import * # noqa: F403
from src.taskmodules import * # noqa: F403
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def evaluate(cfg: DictConfig) -> Tuple[dict, dict]:
"""Evaluates given checkpoint on a datamodule testset.
This method is wrapped in optional @task_wrapper decorator which applies extra utilities
before and after the call.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# Set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
pl.seed_everything(cfg.seed, workers=True)
# Init pytorch-ie dataset
log.info(f"Instantiating dataset <{cfg.dataset._target_}>")
dataset: DatasetDict = hydra.utils.instantiate(cfg.dataset, _convert_="partial")
# Init pytorch-ie taskmodule
log.info(f"Instantiating taskmodule <{cfg.taskmodule._target_}>")
taskmodule: TaskModule = hydra.utils.instantiate(cfg.taskmodule, _convert_="partial")
# auto-convert the dataset if the metric specifies a document type
dataset = taskmodule.convert_dataset(dataset)
# Init pytorch-ie datamodule
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>")
datamodule: PieDataModule = hydra.utils.instantiate(
cfg.datamodule, dataset=dataset, taskmodule=taskmodule, _convert_="partial"
)
# Init pytorch-ie model
log.info(f"Instantiating model <{cfg.model._target_}>")
model: PyTorchIEModel = hydra.utils.instantiate(cfg.model, _convert_="partial")
# Init lightning loggers
logger = utils.instantiate_dict_entries(cfg, "logger")
# Init lightning trainer
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger, _convert_="partial")
object_dict = {
"cfg": cfg,
"taskmodule": taskmodule,
"dataset": dataset,
"model": model,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(logger=logger, model=model, taskmodule=taskmodule, config=cfg)
log.info("Starting testing!")
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
# for predictions use trainer.predict(...)
# predictions = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=cfg.ckpt_path)
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.2", config_path=str(root / "configs"), config_name="evaluate.yaml")
def main(cfg: DictConfig) -> None:
metric_dict, _ = evaluate(cfg)
return metric_dict
if __name__ == "__main__":
utils.replace_sys_args_with_values_from_files()
utils.prepare_omegaconf()
main()