ArneBinder's picture
new demo setup with langchain retriever
2cc87ec verified
import types
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import torch
from transformers.pipelines.base import ArgumentHandler, ChunkPipeline, Dataset
from transformers.utils import is_tf_available, is_torch_available
if is_tf_available():
import tensorflow as tf
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
)
if is_torch_available():
from transformers.models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
def list_of_dicts2dict_of_lists(list_of_dicts: list[dict]) -> dict[str, list]:
return {k: [d[k] for d in list_of_dicts] for k in list_of_dicts[0].keys()}
class FeatureExtractionArgumentHandler(ArgumentHandler):
"""Handles arguments for feature extraction."""
def __call__(self, inputs: Union[str, List[str]], **kwargs):
if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0:
inputs = list(inputs)
batch_size = len(inputs)
elif isinstance(inputs, str):
inputs = [inputs]
batch_size = 1
elif (
Dataset is not None
and isinstance(inputs, Dataset)
or isinstance(inputs, types.GeneratorType)
):
return inputs, None
else:
raise ValueError("At least one input is required.")
offset_mapping = kwargs.get("offset_mapping")
if offset_mapping:
if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple):
offset_mapping = [offset_mapping]
if len(offset_mapping) != batch_size:
raise ValueError("offset_mapping should have the same batch size as the input")
return inputs, offset_mapping
class FeatureExtractionPipelineWithStriding(ChunkPipeline):
"""Same as transformers.FeatureExtractionPipeline, but with long input handling. Inspired by
transformers.TokenClassificationPipeline. The functionality is triggered when providing the
"stride" parameter (can be 0). When passing "create_unique_embeddings_per_token=True", only one
embedding (and other data, see flags below) per token will be returned (this makes use of
min_distance_to_border, see "return_min_distance_to_border" below for details). Note that this
removes data for special token positions!
Per default, it will return just the embeddings. If any of the return_ADDITIONAL_RESULT is
enabled (see below), it will return dictionaries with "last_hidden_state" and all
ADDITIONAL_RESULT depending on the flags.
Flags to return additional results:
return_offset_mapping: If enabled, return the offset mapping.
return_special_tokens_mask: If enabled, return the special tokens mask.
return_sequence_indices: If enabled, return the sequence indices.
return_position_ids: If enabled, return the position ids from, values are in [0, model_max_length).
return_min_distance_to_border: If enabled, return the minimum distance to the "border" of
the input that gets passed into the model. This is useful when striding is used which may
produce multiple embeddings for a token (compare values in offset_mapping). In this case,
min_distance_to_border can be used to select the embedding that is more in the center
of the input by choosing the entry with the *higher* min_distance_to_border.
"""
default_input_names = "sequences"
def __init__(self, args_parser=FeatureExtractionArgumentHandler(), *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if self.framework == "tf"
else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
self._args_parser = args_parser
def _sanitize_parameters(
self,
offset_mapping: Optional[List[Tuple[int, int]]] = None,
stride: Optional[int] = None,
create_unique_embeddings_per_token: Optional[bool] = False,
return_offset_mapping: Optional[bool] = None,
return_special_tokens_mask: Optional[bool] = None,
return_sequence_indices: Optional[bool] = None,
return_position_ids: Optional[bool] = None,
return_min_distance_to_border: Optional[bool] = None,
return_tensors=None,
):
preprocess_params = {}
if offset_mapping is not None:
preprocess_params["offset_mapping"] = offset_mapping
if stride is not None:
if stride >= self.tokenizer.model_max_length:
raise ValueError(
"`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)"
)
if self.tokenizer.is_fast:
tokenizer_params = {
"return_overflowing_tokens": True,
"padding": True,
"stride": stride,
}
preprocess_params["tokenizer_params"] = tokenizer_params # type: ignore
else:
raise ValueError(
"`stride` was provided to process all the text but you're using a slow tokenizer."
" Please use a fast tokenizer."
)
postprocess_params = {}
if create_unique_embeddings_per_token is not None:
postprocess_params["create_unique_embeddings_per_token"] = (
create_unique_embeddings_per_token
)
if return_offset_mapping is not None:
postprocess_params["return_offset_mapping"] = return_offset_mapping
if return_special_tokens_mask is not None:
postprocess_params["return_special_tokens_mask"] = return_special_tokens_mask
if return_sequence_indices is not None:
postprocess_params["return_sequence_indices"] = return_sequence_indices
if return_position_ids is not None:
postprocess_params["return_position_ids"] = return_position_ids
if return_min_distance_to_border is not None:
postprocess_params["return_min_distance_to_border"] = return_min_distance_to_border
if return_tensors is not None:
postprocess_params["return_tensors"] = return_tensors
return preprocess_params, {}, postprocess_params
def __call__(self, inputs: Union[str, List[str]], **kwargs):
_inputs, offset_mapping = self._args_parser(inputs, **kwargs)
if offset_mapping:
kwargs["offset_mapping"] = offset_mapping
return super().__call__(inputs, **kwargs)
def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
tokenizer_params = preprocess_params.pop("tokenizer_params", {})
truncation = (
True
if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0
else False
)
inputs = self.tokenizer(
sentence,
return_tensors=self.framework,
truncation=truncation,
return_special_tokens_mask=True,
return_offsets_mapping=self.tokenizer.is_fast,
**tokenizer_params,
)
inputs.pop("overflow_to_sample_mapping", None)
num_chunks = len(inputs["input_ids"])
for i in range(num_chunks):
if self.framework == "tf":
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
else:
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
if offset_mapping is not None:
model_inputs["offset_mapping"] = offset_mapping
model_inputs["sentence"] = sentence if i == 0 else None
model_inputs["is_last"] = i == num_chunks - 1
yield model_inputs
def _forward(self, model_inputs, **kwargs):
# Forward
special_tokens_mask = model_inputs.pop("special_tokens_mask")
offset_mapping = model_inputs.pop("offset_mapping", None)
sentence = model_inputs.pop("sentence")
is_last = model_inputs.pop("is_last")
if self.framework == "tf":
last_hidden_state = self.model(**model_inputs)[0]
else:
output = self.model(**model_inputs)
last_hidden_state = (
output["last_hidden_state"] if isinstance(output, dict) else output[0]
)
return {
"last_hidden_state": last_hidden_state,
"special_tokens_mask": special_tokens_mask,
"offset_mapping": offset_mapping,
"sentence": sentence,
"is_last": is_last,
**model_inputs,
}
def postprocess_tensor(self, data, return_tensors=False):
if return_tensors:
return data
if self.framework == "pt":
return data.tolist()
elif self.framework == "tf":
return data.numpy().tolist()
else:
raise ValueError(f"unknown framework: {self.framework}")
def make_embeddings_unique_per_token(
self, data, offset_mapping, special_tokens_mask, min_distance_to_border
):
char_offsets2token_pos = defaultdict(list)
bs, seq_len = offset_mapping.shape[:2]
if bs != 1:
raise ValueError(f"expected result batch size 1, but it is: {bs}")
for token_idx, ((char_start, shar_end), is_special_token, min_dist) in enumerate(
zip(
offset_mapping[0].tolist(),
special_tokens_mask[0].tolist(),
min_distance_to_border[0].tolist(),
)
):
if not is_special_token:
char_offsets2token_pos[(char_start, shar_end)].append((token_idx, min_dist))
# tokens_with_multiple_embeddings = {k: v for k, v in char_offsets2token_pos.items() if len(v) > 1}
char_offsets2best_token_pos = {
k: max(v, key=lambda pos_dist: pos_dist[1])[0]
for k, v in char_offsets2token_pos.items()
}
# sort by char offsets (start and end)
sorted_char_offsets_token_positions = sorted(
char_offsets2best_token_pos.items(),
key=lambda char_offsets_tok_pos: (
char_offsets_tok_pos[0][0],
char_offsets_tok_pos[0][1],
),
)
best_indices = [tok_pos for char_offsets, tok_pos in sorted_char_offsets_token_positions]
result = {k: v[0][best_indices].unsqueeze(0) for k, v in data.items()}
return result
def postprocess(
self,
all_outputs,
create_unique_embeddings_per_token: bool = False,
return_offset_mapping: bool = False,
return_special_tokens_mask: bool = False,
return_sequence_indices: bool = False,
return_position_ids: bool = False,
return_min_distance_to_border: bool = False,
return_tensors: bool = False,
):
all_outputs_dict = list_of_dicts2dict_of_lists(all_outputs)
if self.framework == "pt":
result = {
"last_hidden_state": torch.concat(all_outputs_dict["last_hidden_state"], axis=1)
}
if return_offset_mapping or create_unique_embeddings_per_token:
result["offset_mapping"] = torch.concat(all_outputs_dict["offset_mapping"], axis=1)
if return_special_tokens_mask or create_unique_embeddings_per_token:
result["special_tokens_mask"] = torch.concat(
all_outputs_dict["special_tokens_mask"], axis=1
)
if return_sequence_indices:
sequence_indices = []
for seq_idx, model_outputs in enumerate(all_outputs):
sequence_indices.append(torch.ones_like(model_outputs["input_ids"]) * seq_idx)
result["sequence_indices"] = torch.concat(sequence_indices, axis=1)
if return_position_ids:
position_ids = []
for seq_idx, model_outputs in enumerate(all_outputs):
seq_len = model_outputs["input_ids"].size(1)
position_ids.append(torch.arange(seq_len).unsqueeze(0))
result["indices"] = torch.concat(position_ids, axis=1)
if return_min_distance_to_border or create_unique_embeddings_per_token:
min_distance_to_border = []
for seq_idx, model_outputs in enumerate(all_outputs):
seq_len = model_outputs["input_ids"].size(1)
current_indices = torch.arange(seq_len).unsqueeze(0)
min_distance_to_border.append(
torch.minimum(current_indices, seq_len - current_indices)
)
result["min_distance_to_border"] = torch.concat(min_distance_to_border, axis=1)
elif self.framework == "tf":
raise NotImplementedError()
else:
raise ValueError(f"unknown framework: {self.framework}")
if create_unique_embeddings_per_token:
offset_mapping = result["offset_mapping"]
if not return_offset_mapping:
del result["offset_mapping"]
special_tokens_mask = result["special_tokens_mask"]
if not return_special_tokens_mask:
del result["special_tokens_mask"]
min_distance_to_border = result["min_distance_to_border"]
if not return_min_distance_to_border:
del result["min_distance_to_border"]
result = self.make_embeddings_unique_per_token(
data=result,
offset_mapping=offset_mapping,
special_tokens_mask=special_tokens_mask,
min_distance_to_border=min_distance_to_border,
)
result = {
k: self.postprocess_tensor(v, return_tensors=return_tensors) for k, v in result.items()
}
if set(result) == {"last_hidden_state"}:
return result["last_hidden_state"]
else:
return result