Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,89 @@
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
-
|
3 |
import numpy as np
|
|
|
|
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
-
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# Load model Keras
|
11 |
-
model = tf.keras.models.load_model("lontara_model_finetuning.keras")
|
12 |
-
|
13 |
-
# Label kelas sesuai model
|
14 |
-
labels = [
|
15 |
-
"Tu", "He", "We", "No", "Mu", "Bu", "Ji", "Jo", "I", "Nro", "Cu", "Na", "Bo", "Yi", "Se", "Nyi",
|
16 |
-
"So", "Wa", "Ko", "Ge", "E", "Yo", "Ngu", "Ra", "Wo", "Ta", "Pe", "Nra", "Da", "Ci", "Lo", "Nci",
|
17 |
-
"U", "Ro", "Mo", "Nre", "Du", "Be", "Mpu", "Hu", "Ne", "Nyo", "Ncu", "Su", "Ju", "Gu", "Nu", "Di",
|
18 |
-
"Nri", "Gi", "Co", "Nca", "Ri", "Si", "Ja", "Bi", "Ke", "Wu", "Nki", "Te", "Go", "Ya", "Nku", "Pu",
|
19 |
-
"Nka", "Ba", "Mpe", "A", "Nya", "Me", "Nge", "Mpa", "Ma", "Mpi", "O", "Mi", "Re", "Po", "Ti", "Je",
|
20 |
-
"Nco", "Pa", "Ho", "Nko", "Ce", "Li", "Nke", "Ru", "Ca", "Ke_", "Do", "Ga", "Mpo", "Nye", "Nru", "Nga",
|
21 |
-
"Lu", "Pi", "Ku", "Ni", "Nce", "Le", "Ngo", "De", "Ki", "Wi", "Hi", "Ye", "Ngi", "Ka", "Nyu", "La",
|
22 |
-
"Ha", "Sa"
|
23 |
-
]
|
24 |
-
|
25 |
-
@app.get("/")
|
26 |
def home():
|
27 |
return {"message": "Aksara Lontara API is running"}
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@app.post("/predict")
|
30 |
async def predict(file: UploadFile = File(...)):
|
31 |
-
# Baca gambar
|
32 |
-
image = Image.open(io.BytesIO(await file.read())).convert("L")
|
33 |
-
image = np.array(image)
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
return {"
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
+
|
3 |
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import tensorflow as tf
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def home():
|
13 |
return {"message": "Aksara Lontara API is running"}
|
14 |
|
15 |
+
def preprocess_image(image: np.ndarray):
|
16 |
+
""" Melakukan segmentasi karakter menggunakan OpenCV """
|
17 |
+
|
18 |
+
# **1️⃣ Edge Detection (Canny)**
|
19 |
+
edges = cv2.Canny(image, 50, 150)
|
20 |
+
|
21 |
+
# **2️⃣ Morphological Cleaning**
|
22 |
+
kernel = np.ones((3, 3), np.uint8)
|
23 |
+
edges_cleaned = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2)
|
24 |
+
|
25 |
+
# **3️⃣ Connected Component Analysis (CCA)**
|
26 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(edges_cleaned, connectivity=8)
|
27 |
+
|
28 |
+
# **4️⃣ Filter huruf berdasarkan area**
|
29 |
+
min_area = 500
|
30 |
+
bounding_boxes = []
|
31 |
+
|
32 |
+
for i in range(1, num_labels): # Skip background
|
33 |
+
x, y, w, h, area = stats[i]
|
34 |
+
if area > min_area:
|
35 |
+
bounding_boxes.append((x, y, w, h))
|
36 |
+
|
37 |
+
# **5️⃣ Urutkan huruf berdasarkan posisi X**
|
38 |
+
bounding_boxes.sort(key=lambda b: b[0])
|
39 |
+
|
40 |
+
# **6️⃣ Gabungkan Bounding Box yang Berdekatan**
|
41 |
+
merged_boxes = []
|
42 |
+
merge_threshold = 20
|
43 |
+
|
44 |
+
for i in range(len(bounding_boxes)):
|
45 |
+
x, y, w, h = bounding_boxes[i]
|
46 |
+
|
47 |
+
if merged_boxes and (x - (merged_boxes[-1][0] + merged_boxes[-1][2])) < merge_threshold:
|
48 |
+
x_prev, y_prev, w_prev, h_prev = merged_boxes.pop()
|
49 |
+
x_new = min(x_prev, x)
|
50 |
+
y_new = min(y_prev, y)
|
51 |
+
w_new = max(x_prev + w_prev, x + w) - x_new
|
52 |
+
h_new = max(y_prev + h_prev, y + h) - y_new
|
53 |
+
merged_boxes.append((x_new, y_new, w_new, h_new))
|
54 |
+
else:
|
55 |
+
merged_boxes.append((x, y, w, h))
|
56 |
+
|
57 |
+
# **7️⃣ Potong dan proses karakter**
|
58 |
+
segmented_chars = []
|
59 |
+
for (x, y, w, h) in merged_boxes:
|
60 |
+
char_segment = image[y:y+h, x:x+w]
|
61 |
+
char_segment = cv2.resize(char_segment, (128, 128), interpolation=cv2.INTER_AREA)
|
62 |
+
segmented_chars.append(char_segment)
|
63 |
+
|
64 |
+
return segmented_chars
|
65 |
+
|
66 |
@app.post("/predict")
|
67 |
async def predict(file: UploadFile = File(...)):
|
68 |
+
# Baca gambar dari file upload
|
69 |
+
image = Image.open(io.BytesIO(await file.read())).convert("L")
|
70 |
+
image = np.array(image)
|
71 |
+
|
72 |
+
# **Segmentasi huruf**
|
73 |
+
segmented_chars = preprocess_image(image)
|
74 |
+
|
75 |
+
# Jika tidak ada huruf terdeteksi
|
76 |
+
if not segmented_chars:
|
77 |
+
return {"prediction": "No characters detected"}
|
78 |
+
|
79 |
+
# **Prediksi untuk setiap karakter**
|
80 |
+
predictions = []
|
81 |
+
for char in segmented_chars:
|
82 |
+
char_norm = np.array(char) / 255.0 # Normalisasi
|
83 |
+
char_norm = char_norm.reshape(1, 128, 128, 1) # Reshape untuk model
|
84 |
|
85 |
+
prediction = model.predict(char_norm)
|
86 |
+
predicted_label = labels[np.argmax(prediction)]
|
87 |
+
predictions.append(predicted_label)
|
88 |
|
89 |
+
return {"predictions": predictions}
|