Spaces:
Runtime error
Runtime error
Commit
Β·
a357a65
1
Parent(s):
70cb4e9
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled29.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Lv3LjRH9bHwMhKsWvFcELMzKqmXd9UIb
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install -q transformers
|
11 |
+
!pip install -q gradio
|
12 |
+
|
13 |
+
import nltk
|
14 |
+
import librosa
|
15 |
+
import torch
|
16 |
+
import soundfile as sf
|
17 |
+
import gradio as gr
|
18 |
+
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
19 |
+
nltk.download("punkt")
|
20 |
+
|
21 |
+
input_file = "/content/drive/MyDrive/AAAAUDIO/My Audio.wav"
|
22 |
+
|
23 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
24 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
25 |
+
|
26 |
+
def load_data(input_file):
|
27 |
+
|
28 |
+
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
29 |
+
"""
|
30 |
+
#read the file
|
31 |
+
speech, sample_rate = sf.read(input_file)
|
32 |
+
|
33 |
+
#make it 1-D
|
34 |
+
if len(speech.shape) > 1:
|
35 |
+
speech = speech[:,0] + speech[:,1]
|
36 |
+
|
37 |
+
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
38 |
+
if sample_rate !=16000:
|
39 |
+
speech = librosa.resample(speech, sample_rate,16000)
|
40 |
+
return speech
|
41 |
+
|
42 |
+
def asr_transcript(input_file):
|
43 |
+
speech = load_data(input_file)
|
44 |
+
|
45 |
+
#Tokenize
|
46 |
+
input_values = tokenizer(speech, return_tensors="pt").input_values
|
47 |
+
|
48 |
+
#Take logits
|
49 |
+
logits = model(input_values).logits
|
50 |
+
|
51 |
+
#Take argmax
|
52 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
53 |
+
|
54 |
+
#Get the words from predicted word ids
|
55 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
56 |
+
|
57 |
+
#Output is all upper case
|
58 |
+
transcription = correct_casing(transcription.lower())
|
59 |
+
|
60 |
+
return transcription
|
61 |
+
|
62 |
+
gr.Interface(asr_transcript,
|
63 |
+
inputs = gr.inputs.Audio(label = "Input Audio", type= "file"),
|
64 |
+
outputs = gr.outputs.Textbox(label="Output Text"),
|
65 |
+
title="Real-time ASR using Wav2Vec 2.0",
|
66 |
+
description = "asdfghnjmk",
|
67 |
+
examples = [["/content/drive/MyDrive/AAAAUDIO/My Audio.wav"]]).launch()
|
68 |
+
|