writing-prototypes / simplified.py
kcarnold's picture
don't need api server
18ddc73
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import DynamicCache
USE_GPU = torch.cuda.is_available()
@st.cache_resource
def load_model():
import torch
model_name = 'google/gemma-2-9b-it'
dtype = torch.bfloat16 if USE_GPU else torch.float16
llm = {
'tokenizer': AutoTokenizer.from_pretrained(model_name),
'model': AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto" if USE_GPU else "cpu",
torch_dtype=dtype,
attn_implementation='eager'
)
}
llm['model'].eval()
return llm
def type_assistant_response():
if 'messages' not in st.session_state or st.button("Start a new conversation"):
st.session_state['messages'] = [{"role": "user", "content": ""}]
st.session_state['msg_in_progress'] = ""
messages = st.session_state.messages
def rewind_to(i):
st.session_state.messages = st.session_state.messages[:i+1]
st.session_state['msg_in_progress'] = st.session_state.messages[-1]['content']
for i, message in enumerate(st.session_state.messages[:-1]):
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.button("Edit", on_click=rewind_to, args=(i,), key=f"rewind_to_{i}")
# Display message-in-progress in chat message container
last_role = messages[-1]["role"]
with st.chat_message(last_role):
label = "Your message" if last_role == "user" else "Assistant response"
msg_in_progress = st.text_area(label, placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300, key="msg_in_progress")
if msg_in_progress is None:
msg_in_progress = ""
messages[-1]['content'] = msg_in_progress
def append_token(word):
messages[-1]['content'] = st.session_state['msg_in_progress'] = (
msg_in_progress + word
)
allow_multi_word = st.checkbox("Allow multi-word predictions", value=False)
response = continue_messages(
messages=messages,
n_branch_tokens=5,
n_future_tokens=2
)
continuations = response['continuations']
for i, (col, continuation) in enumerate(zip(st.columns(len(continuations)), continuations)):
token = continuation['doc_text']
with col:
if not allow_multi_word and ' ' in token[1:]:
token = token[0] + token[1:].split(' ', 1)[0]
# if not allow_multi_word:
# import re
# split_result = re.split(r'(\s+)', token, maxsplit=1)
# assert len(split_result) == 3
# before_ws, token, after_ws = split_result
# print(repr(split_result))
# if before_ws != '':
# token = before_ws
token_display = show_token(token)
st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True)
def send_message():
other_role = "assistant" if last_role == "user" else "user"
st.session_state['messages'].append({"role": other_role, "content": ""})
st.session_state['msg_in_progress'] = ""
st.button("Send", on_click=send_message)
def show_token(token: str, escape_markdown=True) -> str:
token_display = token.replace('\n', '↵').replace('\t', '⇥')
if escape_markdown:
for c in "\\`*_{}[]()#+-.!":
token_display = token_display.replace(c, "\\" + c)
return token_display
def continue_messages(messages, n_branch_tokens, n_future_tokens):
messages = [{"role": m.role, "content": m.content} for m in messages]
if len(messages) == 0:
raise ValueError("At least one message must be provided.")
llm = load_model()
model = llm['model']
tokenizer = llm['tokenizer']
generated_docs = continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens)
return {
'continuations': [dict(doc_text=doc) for doc in generated_docs]
}
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
"""
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
"""
assert len(hypotheses.shape) == 2
assert hypotheses.shape[0] == 1
n_tokens_so_far = hypotheses.shape[1]
past_key_values = DynamicCache()
with torch.no_grad():
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values)
branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices
# split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"...
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device))
# Now call the model again, passing the kv cache, so we can continue generating.
# Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch".
next_tokens_as_batch = branch_tokens.unsqueeze(1)
assert next_tokens_as_batch.shape == (n_branch_tokens, 1)
position_id_for_final_token = n_tokens_so_far
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device)
with torch.no_grad():
model_outs = model(
next_tokens_as_batch,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
# the cache surprisingly doesn't know the position of the last token
cache_position=cache_position
)
# Grab the single most likely token from each of the n_branch_tokens sequences
next_token_logits = model_outs.logits[:, -1]
vocab_size = model.config.vocab_size
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}"
most_likely_token_ids = next_token_logits.argmax(dim=-1)
# Stick them at the end of the branch tokens.
assert most_likely_token_ids.shape == (n_branch_tokens,)
lookahead_sequences = torch.cat([
branch_tokens.unsqueeze(1),
most_likely_token_ids.unsqueeze(1)
], dim=1)
assert lookahead_sequences.shape == (n_branch_tokens, 2)
return lookahead_sequences, next_token_logits
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens):
# Note: we're ignoring n_future_tokens right now since the old implementation was buggy.
device = model.device
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device)
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False))
lookahead_sequences, next_token_logits = get_lookahead_sequences(
model, tokenizer, tokenized_chat, n_branch_tokens, device)
generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True)
return generated_docs
type_assistant_response()