Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import DynamicCache | |
USE_GPU = torch.cuda.is_available() | |
def load_model(): | |
import torch | |
model_name = 'google/gemma-2-9b-it' | |
dtype = torch.bfloat16 if USE_GPU else torch.float16 | |
llm = { | |
'tokenizer': AutoTokenizer.from_pretrained(model_name), | |
'model': AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto" if USE_GPU else "cpu", | |
torch_dtype=dtype, | |
attn_implementation='eager' | |
) | |
} | |
llm['model'].eval() | |
return llm | |
def type_assistant_response(): | |
if 'messages' not in st.session_state or st.button("Start a new conversation"): | |
st.session_state['messages'] = [{"role": "user", "content": ""}] | |
st.session_state['msg_in_progress'] = "" | |
messages = st.session_state.messages | |
def rewind_to(i): | |
st.session_state.messages = st.session_state.messages[:i+1] | |
st.session_state['msg_in_progress'] = st.session_state.messages[-1]['content'] | |
for i, message in enumerate(st.session_state.messages[:-1]): | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
st.button("Edit", on_click=rewind_to, args=(i,), key=f"rewind_to_{i}") | |
# Display message-in-progress in chat message container | |
last_role = messages[-1]["role"] | |
with st.chat_message(last_role): | |
label = "Your message" if last_role == "user" else "Assistant response" | |
msg_in_progress = st.text_area(label, placeholder="Clicking the buttons below will update this field. You can also edit it directly; press Ctrl+Enter to apply changes.", height=300, key="msg_in_progress") | |
if msg_in_progress is None: | |
msg_in_progress = "" | |
messages[-1]['content'] = msg_in_progress | |
def append_token(word): | |
messages[-1]['content'] = st.session_state['msg_in_progress'] = ( | |
msg_in_progress + word | |
) | |
allow_multi_word = st.checkbox("Allow multi-word predictions", value=False) | |
response = continue_messages( | |
messages=messages, | |
n_branch_tokens=5, | |
n_future_tokens=2 | |
) | |
continuations = response['continuations'] | |
for i, (col, continuation) in enumerate(zip(st.columns(len(continuations)), continuations)): | |
token = continuation['doc_text'] | |
with col: | |
if not allow_multi_word and ' ' in token[1:]: | |
token = token[0] + token[1:].split(' ', 1)[0] | |
# if not allow_multi_word: | |
# import re | |
# split_result = re.split(r'(\s+)', token, maxsplit=1) | |
# assert len(split_result) == 3 | |
# before_ws, token, after_ws = split_result | |
# print(repr(split_result)) | |
# if before_ws != '': | |
# token = before_ws | |
token_display = show_token(token) | |
st.button(token_display, on_click=append_token, args=(token,), key=i, use_container_width=True) | |
def send_message(): | |
other_role = "assistant" if last_role == "user" else "user" | |
st.session_state['messages'].append({"role": other_role, "content": ""}) | |
st.session_state['msg_in_progress'] = "" | |
st.button("Send", on_click=send_message) | |
def show_token(token: str, escape_markdown=True) -> str: | |
token_display = token.replace('\n', '↵').replace('\t', '⇥') | |
if escape_markdown: | |
for c in "\\`*_{}[]()#+-.!": | |
token_display = token_display.replace(c, "\\" + c) | |
return token_display | |
def continue_messages(messages, n_branch_tokens, n_future_tokens): | |
messages = [{"role": m.role, "content": m.content} for m in messages] | |
if len(messages) == 0: | |
raise ValueError("At least one message must be provided.") | |
llm = load_model() | |
model = llm['model'] | |
tokenizer = llm['tokenizer'] | |
generated_docs = continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens) | |
return { | |
'continuations': [dict(doc_text=doc) for doc in generated_docs] | |
} | |
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device): | |
""" | |
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on. | |
""" | |
assert len(hypotheses.shape) == 2 | |
assert hypotheses.shape[0] == 1 | |
n_tokens_so_far = hypotheses.shape[1] | |
past_key_values = DynamicCache() | |
with torch.no_grad(): | |
model_outs_onestep = model(hypotheses, output_hidden_states=True, past_key_values=past_key_values) | |
branch_tokens = model_outs_onestep.logits[0, -1].topk(n_branch_tokens).indices | |
# split the cache into n_branch_tokens reps. We pretend we're doing a "Beam search"... | |
past_key_values.reorder_cache(torch.zeros((n_branch_tokens,), dtype=torch.long, device=device)) | |
# Now call the model again, passing the kv cache, so we can continue generating. | |
# Each of the n_branch_tokens next tokens will be considered as one sequence in a "batch". | |
next_tokens_as_batch = branch_tokens.unsqueeze(1) | |
assert next_tokens_as_batch.shape == (n_branch_tokens, 1) | |
position_id_for_final_token = n_tokens_so_far | |
cache_position = torch.full((1,), position_id_for_final_token, dtype=int, device=device) | |
with torch.no_grad(): | |
model_outs = model( | |
next_tokens_as_batch, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
use_cache=True, | |
# the cache surprisingly doesn't know the position of the last token | |
cache_position=cache_position | |
) | |
# Grab the single most likely token from each of the n_branch_tokens sequences | |
next_token_logits = model_outs.logits[:, -1] | |
vocab_size = model.config.vocab_size | |
assert next_token_logits.shape == (n_branch_tokens, vocab_size), f"{next_token_logits.shape=}, {n_branch_tokens=}, {vocab_size=}" | |
most_likely_token_ids = next_token_logits.argmax(dim=-1) | |
# Stick them at the end of the branch tokens. | |
assert most_likely_token_ids.shape == (n_branch_tokens,) | |
lookahead_sequences = torch.cat([ | |
branch_tokens.unsqueeze(1), | |
most_likely_token_ids.unsqueeze(1) | |
], dim=1) | |
assert lookahead_sequences.shape == (n_branch_tokens, 2) | |
return lookahead_sequences, next_token_logits | |
def continue_messages_inner(model, tokenizer, messages, n_branch_tokens, n_future_tokens): | |
# Note: we're ignoring n_future_tokens right now since the old implementation was buggy. | |
device = model.device | |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", continue_final_message=True).to(model.device) | |
print(tokenizer.batch_decode(tokenized_chat, skip_special_tokens=False)) | |
lookahead_sequences, next_token_logits = get_lookahead_sequences( | |
model, tokenizer, tokenized_chat, n_branch_tokens, device) | |
generated_docs = tokenizer.batch_decode(lookahead_sequences, skip_special_tokens=True) | |
return generated_docs | |
type_assistant_response() | |