Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
7d670d5
1
Parent(s):
5e72870
hf cuda issue
Browse files
app.py
CHANGED
@@ -395,7 +395,7 @@ def get_ref_anno(img, keypts, use_mask, use_pose):
|
|
395 |
print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
396 |
print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
397 |
print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
398 |
-
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
|
399 |
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
|
400 |
if no_mask:
|
401 |
mask = torch.zeros_like(mask)
|
|
|
395 |
print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
396 |
print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
397 |
print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
398 |
+
latent = opts.latent_scaling_factor * autoencoder.encode(image.cuda()).sample().to(pre_device)
|
399 |
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
|
400 |
if no_mask:
|
401 |
mask = torch.zeros_like(mask)
|