File size: 4,401 Bytes
829d1dc
 
 
638c39d
829d1dc
 
 
 
 
eea3399
829d1dc
53cc37d
829d1dc
 
 
 
eea3399
 
15b4f9a
eea3399
 
6667420
 
829d1dc
638c39d
829d1dc
eea3399
53cc37d
829d1dc
 
 
 
 
 
9b37578
829d1dc
 
 
 
 
 
eea3399
 
53cc37d
eea3399
 
27c1ccc
 
 
 
829d1dc
 
 
 
 
6667420
 
829d1dc
27c1ccc
829d1dc
 
 
 
 
 
 
 
 
 
 
 
 
eea3399
829d1dc
 
eea3399
 
15b4f9a
 
53cc37d
 
eea3399
 
 
 
 
 
53cc37d
 
eea3399
15b4f9a
829d1dc
 
53cc37d
829d1dc
 
 
6667420
829d1dc
 
 
 
27c1ccc
829d1dc
6667420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
829d1dc
 
 
 
 
 
 
 
 
 
53cc37d
 
15b4f9a
53cc37d
15b4f9a
53cc37d
 
829d1dc
53cc37d
829d1dc
 
eea3399
53cc37d
829d1dc
 
 
 
 
27c1ccc
829d1dc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import numpy as np
import random
import spaces  # Uncomment if using ZeroGPU

from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-2-1-base"

torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

backgrounds_list = ["forest", "city street", "beach", "office", "bus", "laboratory", "factory", "construction site", "hospital", "night club", ""]
poses_list = ["portrait", "side-portrait"]
id_list = ["ID_0", "ID_1", "ID_2", "ID_3", "ID_4", "ID_5"]

gender_dict = {"ID_0": "male"}
MAX_SEED = 10000
image_size = 512

@spaces.GPU  # Uncomment if using ZeroGPU
def infer(
    background,
    pose,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
    num_images=1
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    id = "ID_0"
    gender = gender_dict[id]

    # Construct prompt from dropdown selections
    prompt = f"face {pose.lower()} photo of {gender} {id} person, {background.lower()} background"

    print(prompt)
    print(negative_prompt)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=image_size,
        height=image_size,
        generator=generator,
        num_images_per_prompt=num_images,
    ).images[0]

    return image, seed

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # ID-Booth Demo")

        with gr.Row():
            which_id = gr.Dropdown(
                label="Identity",
                choices=id_list,
                value=id_list[0],
            )

            background = gr.Dropdown(
                label="Background",
                choices=backgrounds_list,
                value=backgrounds_list[0],
            )

            pose = gr.Dropdown(
                label="Pose",
                choices=poses_list,
                value=poses_list[0],
            )

        run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion(open=False, label="Advanced Options"):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape",
            )
            num_inference_steps = gr.Slider( 
                label="Number of sample steps",
                minimum=1,
                maximum=100,
                step=1,
                value=25,
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.1,
                maximum=10.0,
                step=0.1,
                value=3.0,
            )
            num_images = gr.Slider(
                label="Number of output images",
                minimum=1,
                maximum=4,
                step=1,
                value=2,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)


        gr.Examples(
            examples=[
                [id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50],
            ],
            inputs=[which_id, background, pose],
        )

    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            background,
            pose,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            num_images
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()