Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,401 Bytes
829d1dc 638c39d 829d1dc eea3399 829d1dc 53cc37d 829d1dc eea3399 15b4f9a eea3399 6667420 829d1dc 638c39d 829d1dc eea3399 53cc37d 829d1dc 9b37578 829d1dc eea3399 53cc37d eea3399 27c1ccc 829d1dc 6667420 829d1dc 27c1ccc 829d1dc eea3399 829d1dc eea3399 15b4f9a 53cc37d eea3399 53cc37d eea3399 15b4f9a 829d1dc 53cc37d 829d1dc 6667420 829d1dc 27c1ccc 829d1dc 6667420 829d1dc 53cc37d 15b4f9a 53cc37d 15b4f9a 53cc37d 829d1dc 53cc37d 829d1dc eea3399 53cc37d 829d1dc 27c1ccc 829d1dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import numpy as np
import random
import spaces # Uncomment if using ZeroGPU
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-2-1-base"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
backgrounds_list = ["forest", "city street", "beach", "office", "bus", "laboratory", "factory", "construction site", "hospital", "night club", ""]
poses_list = ["portrait", "side-portrait"]
id_list = ["ID_0", "ID_1", "ID_2", "ID_3", "ID_4", "ID_5"]
gender_dict = {"ID_0": "male"}
MAX_SEED = 10000
image_size = 512
@spaces.GPU # Uncomment if using ZeroGPU
def infer(
background,
pose,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
num_images=1
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
id = "ID_0"
gender = gender_dict[id]
# Construct prompt from dropdown selections
prompt = f"face {pose.lower()} photo of {gender} {id} person, {background.lower()} background"
print(prompt)
print(negative_prompt)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=image_size,
height=image_size,
generator=generator,
num_images_per_prompt=num_images,
).images[0]
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ID-Booth Demo")
with gr.Row():
which_id = gr.Dropdown(
label="Identity",
choices=id_list,
value=id_list[0],
)
background = gr.Dropdown(
label="Background",
choices=backgrounds_list,
value=backgrounds_list[0],
)
pose = gr.Dropdown(
label="Pose",
choices=poses_list,
value=poses_list[0],
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape",
)
num_inference_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=4,
step=1,
value=2,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Examples(
examples=[
[id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50],
],
inputs=[which_id, background, pose],
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
background,
pose,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_images
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|