File size: 6,484 Bytes
829d1dc
 
 
638c39d
97797b4
c9c864b
829d1dc
 
 
eea3399
829d1dc
53cc37d
829d1dc
c9c864b
 
 
 
 
 
70854e0
c9c864b
 
 
97797b4
829d1dc
500768f
 
 
eea3399
97797b4
6667420
 
829d1dc
9053798
638c39d
829d1dc
f7db128
eea3399
53cc37d
829d1dc
 
 
 
 
9b37578
829d1dc
c9c864b
1cd913b
 
ec285c2
829d1dc
 
 
 
 
f7db128
53cc37d
eea3399
c9c864b
9ba5625
42f74d9
829d1dc
 
 
 
6667420
 
829d1dc
27c1ccc
42f74d9
829d1dc
42f74d9
829d1dc
40b4ba6
 
88ca7f6
 
40b4ba6
 
41ba023
40b4ba6
 
 
 
 
 
 
 
 
 
 
 
5d65513
4547189
 
dae934a
 
5d65513
829d1dc
5d65513
40b4ba6
 
 
88ca7f6
4547189
88ca7f6
 
c1bd7bb
97797b4
d826eac
 
 
9ba5625
d826eac
 
 
9ba5625
d826eac
 
97797b4
829d1dc
d826eac
b482274
d826eac
bbe1cf1
d826eac
53cc37d
eea3399
b482274
eea3399
1f6904c
eea3399
 
53cc37d
b482274
eea3399
15b4f9a
829d1dc
 
88ca7f6
42f74d9
 
829d1dc
 
6667420
829d1dc
 
 
 
27c1ccc
829d1dc
6667420
88ca7f6
6667420
 
 
837a61c
6667420
 
 
 
 
 
837a61c
6667420
 
 
 
 
 
 
 
829d1dc
 
 
 
 
 
 
 
 
 
d826eac
 
 
 
 
 
53cc37d
829d1dc
53cc37d
829d1dc
 
d826eac
eea3399
53cc37d
829d1dc
 
 
 
 
27c1ccc
829d1dc
42f74d9
829d1dc
 
40b4ba6
 
829d1dc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import numpy as np
import random
import spaces  # Uncomment if using ZeroGPU
import os 
from diffusers import StableDiffusionPipeline, DDPMScheduler
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-2-1-base"

torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

pipe = StableDiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16).to(device)
pipe.scheduler = DDPMScheduler.from_pretrained(model_repo_id, subfolder="scheduler")

folder_of_lora_weights = "./ID-Booth_LoRA_weights"
which_checkpoint = "checkpoint-31-6400"
lora_name = "pytorch_lora_weights.safetensors"

folder_of_identity_images = "./assets/example_images/"

backgrounds_list = ["Forest", "City street", "Beach", "Office", "Bus", "Laboratory", "Factory", "Construction site", "Hospital", "Night club", ""]
poses_list = ["Portrait", "Side-portrait"]
id_list = ["ID_1", "ID_5", "ID_16", "ID_20"]

gender_dict = {"ID_1": "male", "ID_5": "male", "ID_16": "female", "ID_20": "male"}
MAX_SEED = 10000
image_size = 512


@spaces.GPU  # Uncomment if using ZeroGPU
def infer(
    identity,
    background,
    pose,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    num_images=1
):
    
    full_lora_weights_path = f"{folder_of_lora_weights}/{identity}/{which_checkpoint}/{lora_name}"
    pipe.load_lora_weights(full_lora_weights_path)
        
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    gender = gender_dict[identity]

    # Construct prompt from dropdown selections
    prompt = f"face {pose.lower()} photo of {gender} sks person, {background.lower()} background"

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=image_size,
        height=image_size,
        generator=generator,
        num_images_per_prompt=num_images,
    ).images

    return images


### Description
header = " # ID-Booth: Identity-consistent Face Generation with Diffusion Models"
description = "This is an official Gradio demo for the paper <a href='https://dariant.github.io/publications/ID-Booth' target='_blank'>ID-Booth: Identity-consistent Face Generation with Diffusion Models</a>"

footer = r"""
**Citation**
<br>
If you find ID-Booth helpful, please consider citing our paper:
```bibtex
@article{tomasevic2025IDBooth,
  title={{ID-Booth}: Identity-consistent Face Generation with Diffusion Models},
  author={Toma{\v{s}}evi{\'c}, Darian and Boutros, Fadi and Lin, Chenhao and Damer, Naser and {\v{S}}truc, Vitomir and Peer, Peter},
  journal={arXiv preprint arXiv:2504.07392},
  year={2025}
}
```
"""

css = '''
.gradio-container {
    width: 75%;
    margin: auto;
}
'''

with gr.Blocks(css=css) as demo:

    # description
    gr.Markdown(header)
    gr.Markdown(description)
    with gr.Column():
        # with gr.Row():
        #     gr.Markdown("### Choose an identity, background, and pose:")

        with gr.Row():
            for id in id_list:
                image_path = os.path.join(folder_of_identity_images, id + ".jpg")
                img = gr.Image(value=image_path, label=id, 
                               width=256, height=256,
                               show_label=True, interactive=False,
                               show_download_button=False, 
                               show_fullscreen_button=False,
                               show_share_button=False,
                               )
                   
            
        with gr.Row():
            identity = gr.Dropdown(
                label="Identity:",
                choices=id_list,
                value=id_list[2],
            )

            background = gr.Dropdown(
                label="Background:",
                choices=backgrounds_list,
                value=backgrounds_list[1],
            )

            pose = gr.Dropdown(
                label="Pose:",
                choices=poses_list,
                value=poses_list[0],
            )

        run_button = gr.Button("Generate in-the-wild images", scale=0, variant="primary")
        #result = gr.Image(label="Result", show_label=False)
        result = gr.Gallery(label="Generated Images", show_label=False)


        with gr.Accordion(open=False, label="Advanced Options"):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape",
            )
            num_inference_steps = gr.Slider( 
                label="Number of sampling steps",
                minimum=1,
                maximum=100,
                step=1,
                value=30,
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.1,
                maximum=10.0,
                step=0.1,
                value=5.0,
            )
            num_images = gr.Slider(
                label="Number of output images",
                minimum=1,
                maximum=4,
                step=1,
                value=2,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)


        # gr.Examples(
        #     examples=[
        #         [id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50],
        #     ],
        #     inputs=[selected_identity, background, pose],
        # )

    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            identity,
            background,
            pose,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            num_images
        ],
        outputs=[result],
    )

    gr.Markdown(footer)

if __name__ == "__main__":
    demo.launch()