import gradio as gr import numpy as np import random import spaces # Uncomment if using ZeroGPU import os from diffusers import StableDiffusionPipeline, DDPMScheduler import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/stable-diffusion-2-1-base" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) # pipe = pipe.to(device) pipe = StableDiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16).to(device) pipe.scheduler = DDPMScheduler.from_pretrained(model_repo_id, subfolder="scheduler") folder_of_lora_weights = "./ID-Booth_LoRA_weights" which_checkpoint = "checkpoint-31-6400" lora_name = "pytorch_lora_weights.safetensors" selected_identity = gr.State(value="ID_0") # Default selection folder_of_identity_images = "./assets/example_images/" backgrounds_list = ["forest", "city street", "beach", "office", "bus", "laboratory", "factory", "construction site", "hospital", "night club", ""] poses_list = ["portrait", "side-portrait"] id_list = ["ID_0", "ID_1", "ID_2", "ID_3"] gender_dict = {"ID_1": "male", "ID_5": "male", "ID_16": "female", "ID_20": "male"} MAX_SEED = 10000 image_size = 512 @spaces.GPU # Uncomment if using ZeroGPU def infer( which_id, background, pose, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), num_images=1 ): full_lora_weights_path = f"{folder_of_lora_weights}/{which_id}/{which_checkpoint}/{lora_name}" pipe.load_lora_weights(full_lora_weights_path) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) id = "ID_0" gender = gender_dict[which_id] # Construct prompt from dropdown selections prompt = f"face {pose.lower()} photo of {gender} sks person, {background.lower()} background" print(prompt) print(negative_prompt) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=image_size, height=image_size, generator=generator, num_images_per_prompt=num_images, ).images[0] return image, seed css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # ID-Booth Demo") with gr.Row(): #gr.Markdown("### Choose an Identity:") identity_selectors = [] for id in id_list: btn = gr.Image( value=os.path.join(folder_of_identity_images, id + ".jpg"), label=id, interactive=True, height=128, width=128, ) identity_selectors.append(btn) # Set up click handlers def select_identity(id): return id for btn, identity in zip(identity_selectors, folder_of_identity_images): btn.select( select_identity, inputs=[], outputs=[selected_identity], _js=f"() => '{identity}'" ) with gr.Row(): which_id = gr.Dropdown( label="Identity", choices=id_list, value=id_list[0], ) background = gr.Dropdown( label="Background", choices=backgrounds_list, value=backgrounds_list[0], ) pose = gr.Dropdown( label="Pose", choices=poses_list, value=poses_list[0], ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion(open=False, label="Advanced Options"): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="cartoon, cgi, render, illustration, painting, drawing, black and white, bad body proportions, landscape", ) num_inference_steps = gr.Slider( label="Number of sample steps", minimum=1, maximum=100, step=1, value=25, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=3.0, ) num_images = gr.Slider( label="Number of output images", minimum=1, maximum=4, step=1, value=2, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) gr.Examples( examples=[ [id_list[0], backgrounds_list[0], poses_list[0], "A beautiful photo of a person", 0, False, 512, 512, 7.5, 50], ], inputs=[which_id, background, pose], ) gr.on( triggers=[run_button.click], fn=infer, inputs=[ which_id, background, pose, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, num_images ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()