Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import random
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
title = "Ask Rick a Question"
|
7 |
+
description = """
|
8 |
+
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything!
|
9 |
+
<img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
|
10 |
+
"""
|
11 |
+
|
12 |
+
article = "Check out [the original Rick and Morty Bot](https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot) that this demo is based off of."
|
13 |
+
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("./gemma-2b-sciq-checkpoint")
|
16 |
+
model = AutoModelForCausalLM.from_pretrained("./gemma-2b-sciq-checkpoint")
|
17 |
+
|
18 |
+
dataset = load_dataset("allenai/sciq")
|
19 |
+
random_test_samples = dataset["test"].select(random.sample(range(0, len(dataset["test"])), 10))
|
20 |
+
|
21 |
+
examples = []
|
22 |
+
for row in random_test_samples:
|
23 |
+
examples.append([row['support'].replace('\n', ' ')])
|
24 |
+
examples.append([row['support'].replace('\n', ' '), row['correct_answer'].replace('\n', ' ')])
|
25 |
+
|
26 |
+
|
27 |
+
def predict(context, answer):
|
28 |
+
formatted = f"{context.replace('\n', ' ')}\n"
|
29 |
+
|
30 |
+
if answer is not None:
|
31 |
+
formatted = f"{context.replace('\n', ' ')}\n{answer.replace('\n', ' ')}\n"
|
32 |
+
|
33 |
+
|
34 |
+
inputs = tokenizer(formatted, return_tensors="pt")
|
35 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
36 |
+
decoded_outputs = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
split_outputs = decoded_outputs.split("\n")
|
38 |
+
|
39 |
+
if len(split_outputs) == 6:
|
40 |
+
return {
|
41 |
+
"context": split_outputs[0],
|
42 |
+
"answer": split_outputs[1],
|
43 |
+
"question": split_outputs[2],
|
44 |
+
"distractor1": split_outputs[3],
|
45 |
+
"distractor2": split_outputs[4],
|
46 |
+
"distractor3": split_outputs[5],
|
47 |
+
}
|
48 |
+
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
support_gr = gr.TextArea(
|
53 |
+
label="Context",
|
54 |
+
info="Make sure you use proper punctuation.",
|
55 |
+
value="Bananas are yellow and curved."
|
56 |
+
)
|
57 |
+
|
58 |
+
answer_gr = gr.TextArea(
|
59 |
+
label="Answer optional",
|
60 |
+
info="Make sure you use proper punctuation.",
|
61 |
+
value="yellow"
|
62 |
+
)
|
63 |
+
|
64 |
+
button = gr.Button("Generate", elem_id="send-btn", visible=True)
|
65 |
+
|
66 |
+
output_gr = gr.TextArea(
|
67 |
+
label="Output",
|
68 |
+
info="Make sure you use proper punctuation.",
|
69 |
+
value=""
|
70 |
+
)
|
71 |
+
|
72 |
+
gr.Interface(
|
73 |
+
fn=predict,
|
74 |
+
inputs=[support_gr, answer_gr],
|
75 |
+
outputs=[output_gr],
|
76 |
+
title=title,
|
77 |
+
description=description,
|
78 |
+
article=article,
|
79 |
+
examples=examples,
|
80 |
+
).launch()
|