app added
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoProcessor, AutoModel, BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_models():
|
12 |
+
ltx = AutoModel.from_pretrained("Lightricks/LTX-Video", trust_remote_code=True)
|
13 |
+
ltx_processor = AutoProcessor.from_pretrained("Lightricks/LTX-Video")
|
14 |
+
|
15 |
+
blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
16 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
17 |
+
|
18 |
+
clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
19 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
20 |
+
|
21 |
+
return ltx, ltx_processor, blip, blip_processor, clip, clip_processor
|
22 |
+
|
23 |
+
def enhance_image(image):
|
24 |
+
img = np.array(image)
|
25 |
+
denoised = cv2.fastNlMeansDenoisingColored(img)
|
26 |
+
lab = cv2.cvtColor(denoised, cv2.COLOR_RGB2LAB)
|
27 |
+
l, a, b = cv2.split(lab)
|
28 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
29 |
+
l = clahe.apply(l)
|
30 |
+
enhanced = cv2.cvtColor(cv2.merge([l,a,b]), cv2.COLOR_LAB2RGB)
|
31 |
+
return Image.fromarray(enhanced)
|
32 |
+
|
33 |
+
def get_descriptions(image, blip_model, blip_processor, clip_model, clip_processor):
|
34 |
+
blip_inputs = blip_processor(images=image, return_tensors="pt")
|
35 |
+
blip_output = blip_model.generate(**blip_inputs, max_length=50)
|
36 |
+
blip_desc = blip_processor.decode(blip_output[0], skip_special_tokens=True)
|
37 |
+
|
38 |
+
clip_inputs = clip_processor(images=image, return_tensors="pt", text=None)
|
39 |
+
image_features = clip_model.get_image_features(**clip_inputs)
|
40 |
+
|
41 |
+
attributes = ["bright", "dark", "colorful", "natural", "indoor", "outdoor"]
|
42 |
+
text_inputs = clip_processor(text=attributes, return_tensors="pt", images=None)
|
43 |
+
text_features = clip_model.get_text_features(**text_inputs)
|
44 |
+
|
45 |
+
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
46 |
+
detected_attrs = [attr for i, attr in enumerate(attributes) if similarity[i] > 0.2]
|
47 |
+
|
48 |
+
return f"{blip_desc} The image appears {', '.join(detected_attrs)}."
|
49 |
+
|
50 |
+
def generate_video(model, processor, image, description):
|
51 |
+
# Prepare the input
|
52 |
+
inputs = processor(
|
53 |
+
images=image,
|
54 |
+
text=description,
|
55 |
+
return_tensors="pt"
|
56 |
+
)
|
57 |
+
|
58 |
+
# Generate video frames
|
59 |
+
with torch.no_grad():
|
60 |
+
frames = model.generate(
|
61 |
+
**inputs,
|
62 |
+
num_frames=30, # 10 seconds at 3fps
|
63 |
+
num_inference_steps=50,
|
64 |
+
guidance_scale=7.5
|
65 |
+
)
|
66 |
+
|
67 |
+
# Save video to temporary file
|
68 |
+
temp_dir = tempfile.mkdtemp()
|
69 |
+
temp_path = os.path.join(temp_dir, "output.mp4")
|
70 |
+
|
71 |
+
# Convert frames to video
|
72 |
+
frames = frames.cpu().numpy()
|
73 |
+
height, width = frames[0].shape[:2]
|
74 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
75 |
+
video_writer = cv2.VideoWriter(temp_path, fourcc, 3, (width, height))
|
76 |
+
|
77 |
+
for frame in frames:
|
78 |
+
video_writer.write(frame)
|
79 |
+
video_writer.release()
|
80 |
+
|
81 |
+
return temp_path
|
82 |
+
|
83 |
+
def main():
|
84 |
+
st.title("Enhanced Video Generator")
|
85 |
+
|
86 |
+
models = load_models()
|
87 |
+
ltx, ltx_processor, blip, blip_processor, clip, clip_processor = models
|
88 |
+
|
89 |
+
image_file = st.file_uploader("Upload Image", type=['png', 'jpg', 'jpeg'])
|
90 |
+
if image_file:
|
91 |
+
image = Image.open(image_file)
|
92 |
+
enhanced_image = enhance_image(image)
|
93 |
+
|
94 |
+
st.image(enhanced_image, caption="Enhanced Image")
|
95 |
+
|
96 |
+
description = get_descriptions(
|
97 |
+
enhanced_image, blip, blip_processor, clip, clip_processor
|
98 |
+
)
|
99 |
+
st.write("Image Analysis:", description)
|
100 |
+
|
101 |
+
if st.button("Generate Video"):
|
102 |
+
with st.spinner("Generating video..."):
|
103 |
+
video_path = generate_video(ltx, ltx_processor, enhanced_image, description)
|
104 |
+
st.video(video_path)
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|