File size: 9,911 Bytes
db3cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba80f1
db3cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba80f1
db3cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import matplotlib.pyplot as plt
import pandas as np
import tempfile
from datetime import datetime
from langchain_core.messages import HumanMessage
from tools import tools
from agents import *
from config import *
from workflow import create_workflow
import logging
import threading
import queue

# Global timeout variable
TIMEOUT_SECONDS = 300

# Initialize workflow
graph = create_workflow()

# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Helper Functions
def run_graph(input_message, history, user_details):
    def invoke_workflow(q):
        try:
            system_prompt = (
                "You are a fitness and health assistant. "
                "Provide actionable, tailored advice based on the user's personal details and goals. "
                "Incorporate BMI and daily caloric needs into your suggestions. "
                "Encourage the user to ask follow-up questions to clarify or explore specific topics further."
            )

            # Summarize user details
            user_details_summary = (
                f"Name: {user_details.get('name', 'Unknown')}, "
                f"Age: {user_details.get('age', 'Unknown')}, "
                f"Gender: {user_details.get('gender', 'Unknown')}, "
                f"Weight: {user_details.get('weight', 'Unknown')} kg, "
                f"Height: {user_details.get('height', 'Unknown')} cm, "
                f"Activity Level: {user_details.get('activity_level', 'Unknown')}"
            )

            # Messages for the workflow
            messages = [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"User details: {user_details_summary}"},
                {"role": "user", "content": input_message}
            ]

            response = graph.invoke({"messages": messages})

            # Extract LLM response
            llm_response = None
            for msg in response.get("messages", []):
                if isinstance(msg, HumanMessage) and msg.name in ["nutritionist", "workout_coach"]:
                    llm_response = msg.content
                    break

            if llm_response:
                q.put(llm_response)
            else:
                q.put("The workflow did not return a valid response. Please try again.")
        except Exception as e:
            q.put(f"An error occurred: {e}")

    q = queue.Queue()
    thread = threading.Thread(target=invoke_workflow, args=(q,))
    thread.start()
    thread.join(timeout=TIMEOUT_SECONDS)

    if thread.is_alive():
        return f"The request took longer than {TIMEOUT_SECONDS} seconds and timed out. Please try again."
    return q.get()


def calculate_bmi(height, weight):
    height_m = height / 100
    bmi = weight / (height_m ** 2)
    if bmi < 18.5:
        status = "underweight"
    elif 18.5 <= bmi < 24.9:
        status = "normal weight"
    elif 25 <= bmi < 29.9:
        status = "overweight"
    else:
        status = "obese"
    return bmi, status


def visualize_bmi_and_calories(bmi, calories):
    categories = ["Underweight", "Normal Weight", "Overweight", "Obese"]
    bmi_values = [18.5, 24.9, 29.9, 40]
    calorie_range = [1500, 2000, 2500, 3000]

    fig, ax1 = plt.subplots(figsize=(10, 6))

    # BMI Visualization
    ax1.bar(categories, bmi_values, color=['blue', 'green', 'orange', 'red'], alpha=0.6, label="BMI Ranges")
    ax1.axhline(y=bmi, color='purple', linestyle='--', linewidth=2, label=f"Your BMI: {bmi:.2f}")
    ax1.set_ylabel("BMI Value")
    ax1.set_title("BMI and Caloric Needs Visualization")
    ax1.legend(loc="upper left")

    # Calorie Visualization
    ax2 = ax1.twinx()
    ax2.plot(categories, calorie_range, 'o-', color='magenta', label="Calorie Ranges")
    ax2.axhline(y=calories, color='cyan', linestyle='--', linewidth=2, label=f"Your Calorie Needs: {calories:.2f} kcal")
    ax2.set_ylabel("Calories")
    ax2.legend(loc="upper right")

    plt.tight_layout()

    # Save visualization to a temporary file
    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    try:
        plt.savefig(temp_file.name)
    finally:
        plt.close()

    return temp_file.name


def calculate_calories(age, weight, height, activity_level, gender):
    if gender.lower() == "male":
        bmr = 10 * weight + 6.25 * height - 5 * age + 5
    else:
        bmr = 10 * weight + 6.25 * height - 5 * age - 161

    activity_multipliers = {
        "sedentary": 1.2,
        "lightly active": 1.375,
        "moderately active": 1.55,
        "very active": 1.725,
        "extra active": 1.9,
    }

    activity_level = activity_level.lower()
    return bmr * activity_multipliers.get(activity_level, 1.2)

# Interface Components
with gr.Blocks() as demo:
    gr.Markdown("<strong>FIT.AI - Your Fitness and Wellbeing Coach</strong>")

    with gr.Tabs():
        with gr.Tab("Visualization + Chat"):
            # User Input
            with gr.Row():
                user_name = gr.Textbox(placeholder="Enter your name", label="Name")
                user_age = gr.Number(label="Age (years)", value=25, precision=0)
                user_gender = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male")
                user_weight = gr.Number(label="Weight (kg)", value=70, precision=1)
                user_height = gr.Number(label="Height (cm)", value=170, precision=1)
                activity_level = gr.Dropdown(
                    choices=["Sedentary", "Lightly active", "Moderately active", "Very active", "Extra active"],
                    label="Activity Level",
                    value="Moderately active"
                )

            # Visualization Output
            bmi_chart = gr.Image(label="BMI and Calorie Chart")

            # Chat Outputs
            with gr.Row():
                chatbot = gr.Chatbot(label="Chat with FIT.AI")
                text_input = gr.Textbox(placeholder="Type your question here...", label="Your Question")

            submit_button = gr.Button("Submit")
            clear_button = gr.Button("Clear Chat")

            def submit_message(message, history=[]):
                user_details = {
                    "name": user_name.value,
                    "age": user_age.value,
                    "weight": user_weight.value,
                    "height": user_height.value,
                    "activity_level": activity_level.value,
                    "gender": user_gender.value
                }

                bmi, status = calculate_bmi(user_details['height'], user_details['weight'])
                calories = calculate_calories(
                    user_details['age'], user_details['weight'], user_details['height'], user_details['activity_level'], user_details['gender']
                )
                chart_path = visualize_bmi_and_calories(bmi, calories)

                user_prompt = (
                    f"User wants advice on: {message}\n"
                    f"User Details:\n"
                    f"- Name: {user_details['name']}\n"
                    f"- Age: {user_details['age']}\n"
                    f"- Gender: {user_details['gender']}\n"
                    f"- Weight: {user_details['weight']} kg\n"
                    f"- Height: {user_details['height']} cm\n"
                    f"- Activity Level: {user_details['activity_level']}\n"
                    f"- BMI: {bmi:.2f} ({status})\n"
                    f"- Daily Caloric Needs: {calories:.2f} kcal\n"
                    f"\nProvide tailored advice based on these metrics."
                )

                response = run_graph(user_prompt, history, user_details)

                history.append(("User", message))
                if isinstance(response, str):
                    history.append(("FIT.AI", response + "\nWhat other questions can I help with? 😊"))
                else:
                    history.append(("FIT.AI", "An unexpected response was received."))

                return history, chart_path

            submit_button.click(submit_message, inputs=[text_input, chatbot], outputs=[chatbot, bmi_chart])
            clear_button.click(lambda: ([], ""), inputs=None, outputs=[chatbot, bmi_chart])

        # Calculator + Visualization Tab
        with gr.Tab("Calculator + Visualization"):
            user_age_calc = gr.Number(label="Age (years)", value=25, precision=0)
            user_gender_calc = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male")
            user_weight_calc = gr.Number(label="Weight (kg)", value=70, precision=1)
            user_height_calc = gr.Number(label="Height (cm)", value=170, precision=1)
            activity_level_calc = gr.Dropdown(
                choices=["Sedentary", "Lightly active", "Moderately active", "Very active", "Extra active"],
                label="Activity Level",
                value="Moderately active"
            )

            bmi_output = gr.Label(label="BMI Result")
            calorie_output = gr.Label(label="Calorie Needs")
            bmi_chart_calc = gr.Image(label="BMI and Calorie Chart")

            calculate_button = gr.Button("Calculate")

            def calculate_metrics(age, weight, height, gender, activity_level):
                bmi, status = calculate_bmi(height, weight)
                calories = calculate_calories(age, weight, height, activity_level, gender)
                chart_path = visualize_bmi_and_calories(bmi, calories)

                return f"Your BMI is {bmi:.2f}, considered {status}.", f"Daily calorie needs: {calories:.2f} kcal", chart_path

            calculate_button.click(
                calculate_metrics,
                inputs=[user_age_calc, user_weight_calc, user_height_calc, user_gender_calc, activity_level_calc],
                outputs=[bmi_output, calorie_output, bmi_chart_calc]
            )

demo.launch(share=True)