Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,8 @@ from agents import *
|
|
9 |
from config import *
|
10 |
from workflow import create_workflow
|
11 |
import logging
|
|
|
|
|
12 |
|
13 |
# Initialize workflow
|
14 |
graph = create_workflow()
|
@@ -19,41 +21,51 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
# Helper Functions
|
21 |
def run_graph(input_message, history, user_details):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
def calculate_bmi(height, weight):
|
@@ -189,13 +201,11 @@ with gr.Blocks() as demo:
|
|
189 |
]
|
190 |
|
191 |
logger.debug("Submitting messages to LLM: %s", messages)
|
192 |
-
response =
|
193 |
logger.debug("Received LLM response: %s", response)
|
194 |
|
195 |
-
personalized_response = response["messages"][1]["content"]
|
196 |
-
|
197 |
history.append((f"User", message))
|
198 |
-
history.append(("FIT.AI",
|
199 |
return history, chart_path
|
200 |
|
201 |
except Exception as e:
|
@@ -240,4 +250,4 @@ with gr.Blocks() as demo:
|
|
240 |
outputs=[bmi_output, calorie_output, bmi_chart_calc]
|
241 |
)
|
242 |
|
243 |
-
demo.launch(share=True)
|
|
|
9 |
from config import *
|
10 |
from workflow import create_workflow
|
11 |
import logging
|
12 |
+
import threading
|
13 |
+
import queue
|
14 |
|
15 |
# Initialize workflow
|
16 |
graph = create_workflow()
|
|
|
21 |
|
22 |
# Helper Functions
|
23 |
def run_graph(input_message, history, user_details):
|
24 |
+
def invoke_workflow(q):
|
25 |
+
try:
|
26 |
+
system_prompt = (
|
27 |
+
"You are a fitness and health assistant. "
|
28 |
+
"Provide advice based on the user's personal details and goals. "
|
29 |
+
"If user details like weight, height, and activity level are provided, prioritize personalized advice. "
|
30 |
+
"Incorporate metrics such as BMI and daily caloric needs directly into your suggestions. "
|
31 |
+
"Visualize the user's metrics and provide actionable advice tailored to their needs. "
|
32 |
+
"If details are missing, provide general advice but encourage users to share their metrics for tailored guidance."
|
33 |
+
)
|
34 |
+
|
35 |
+
# Compose input for the LLM
|
36 |
+
user_details_summary = (
|
37 |
+
f"Name: {user_details.get('name', 'Unknown')}, "
|
38 |
+
f"Age: {user_details.get('age', 'Unknown')}, "
|
39 |
+
f"Gender: {user_details.get('gender', 'Unknown')}, "
|
40 |
+
f"Weight: {user_details.get('weight', 'Unknown')} kg, "
|
41 |
+
f"Height: {user_details.get('height', 'Unknown')} cm, "
|
42 |
+
f"Activity Level: {user_details.get('activity_level', 'Unknown')}"
|
43 |
+
)
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{"role": "system", "content": system_prompt},
|
47 |
+
{"role": "user", "content": f"User details: {user_details_summary}"},
|
48 |
+
{"role": "user", "content": input_message}
|
49 |
+
]
|
50 |
+
|
51 |
+
logger.debug("Invoking workflow with messages: %s", messages)
|
52 |
+
response = graph.invoke({"messages": messages})
|
53 |
+
logger.debug("Workflow response: %s", response)
|
54 |
+
q.put(response["messages"][1]["content"])
|
55 |
+
except Exception as e:
|
56 |
+
logger.error("Error in run_graph: %s", str(e))
|
57 |
+
q.put(f"An error occurred while processing your request: {e}")
|
58 |
+
|
59 |
+
# Create a queue and thread for timeout handling
|
60 |
+
q = queue.Queue()
|
61 |
+
thread = threading.Thread(target=invoke_workflow, args=(q,))
|
62 |
+
thread.start()
|
63 |
+
thread.join(timeout=10) # Wait for 10 seconds
|
64 |
+
|
65 |
+
if thread.is_alive():
|
66 |
+
logger.error("Workflow timed out.")
|
67 |
+
return "The request timed out. Please try again later."
|
68 |
+
return q.get()
|
69 |
|
70 |
|
71 |
def calculate_bmi(height, weight):
|
|
|
201 |
]
|
202 |
|
203 |
logger.debug("Submitting messages to LLM: %s", messages)
|
204 |
+
response = run_graph(message, history, user_details)
|
205 |
logger.debug("Received LLM response: %s", response)
|
206 |
|
|
|
|
|
207 |
history.append((f"User", message))
|
208 |
+
history.append(("FIT.AI", response))
|
209 |
return history, chart_path
|
210 |
|
211 |
except Exception as e:
|
|
|
250 |
outputs=[bmi_output, calorie_output, bmi_chart_calc]
|
251 |
)
|
252 |
|
253 |
+
demo.launch(share=True)
|